ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp41 Unicode version

Theorem imp41 351
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
imp41  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ta )

Proof of Theorem imp41
StepHypRef Expression
1 imp4.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
21imp 123 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  ->  ( th  ->  ta ) ) )
32imp31 254 1  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  3anassrs  1211  lemul12a  8733
  Copyright terms: Public domain W3C validator