ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an21 Unicode version

Theorem an21 468
Description: Swap two conjuncts. (Contributed by Peter Mazsa, 18-Sep-2022.)
Assertion
Ref Expression
an21  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ps  /\  ( ph  /\  ch ) ) )

Proof of Theorem an21
StepHypRef Expression
1 biid 170 . . 3  |-  ( (
ph  /\  ch )  <->  (
ph  /\  ch )
)
21bianassc 467 . 2  |-  ( ( ps  /\  ( ph  /\ 
ch ) )  <->  ( ( ph  /\  ps )  /\  ch ) )
32bicomi 131 1  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ps  /\  ( ph  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator