| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomi | Unicode version | ||
| Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
| Ref | Expression |
|---|---|
| bicomi.1 |
|
| Ref | Expression |
|---|---|
| bicomi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomi.1 |
. 2
| |
| 2 | bicom1 131 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 an43 588 pm4.76 606 mtbir 675 sylnibr 681 sylnbir 683 xchnxbir 685 xchbinxr 687 nbn 703 pm4.25 762 pm4.56 784 pm4.77 803 pm3.2an3 1181 syl3anbr 1296 3an6 1337 truan 1392 truimfal 1432 nottru 1435 sbid 1800 sb10f 2026 cleljust 2186 eqabdv 2338 nfabdw 2371 necon3bbii 2417 rspc2gv 2899 alexeq 2909 ceqsrexbv 2914 clel2 2916 clel4 2919 dfsbcq2 3011 cbvreucsf 3169 dfdif3 3294 raldifb 3324 difab 3453 un0 3505 in0 3506 ss0b 3511 rexdifpr 3674 snssb 3780 snssg 3781 iindif2m 4012 epse 4410 abnex 4515 uniuni 4519 elco 4865 cotr 5086 issref 5087 mptpreima 5198 ralrnmpt 5750 rexrnmpt 5751 eroveu 6743 wrd2ind 11221 fprodseq 12060 issrg 13894 toptopon 14657 xmeterval 15074 txmetcnp 15157 dedekindicclemicc 15271 eldvap 15321 fsumdvdsmul 15630 if0ab 16079 bdeq 16096 bd0r 16098 bdcriota 16156 bj-d0clsepcl 16198 bj-dfom 16206 |
| Copyright terms: Public domain | W3C validator |