![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicomi | Unicode version |
Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
Ref | Expression |
---|---|
bicomi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bicomi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bicom1 131 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 pm4.76 604 mtbir 672 sylnibr 678 sylnbir 680 xchnxbir 682 xchbinxr 684 nbn 700 pm4.25 759 pm4.56 781 pm4.77 800 pm3.2an3 1178 syl3anbr 1293 3an6 1333 truan 1381 truimfal 1421 nottru 1424 sbid 1785 sb10f 2011 cleljust 2170 eqabdv 2322 nfabdw 2355 necon3bbii 2401 rspc2gv 2877 alexeq 2887 ceqsrexbv 2892 clel2 2894 clel4 2897 dfsbcq2 2989 cbvreucsf 3146 dfdif3 3270 raldifb 3300 difab 3429 un0 3481 in0 3482 ss0b 3487 rexdifpr 3647 snssb 3752 snssg 3753 iindif2m 3981 epse 4374 abnex 4479 uniuni 4483 elco 4829 cotr 5048 issref 5049 mptpreima 5160 ralrnmpt 5701 rexrnmpt 5702 eroveu 6682 fprodseq 11729 issrg 13464 toptopon 14197 xmeterval 14614 txmetcnp 14697 dedekindicclemicc 14811 eldvap 14861 if0ab 15367 bdeq 15385 bd0r 15387 bdcriota 15445 bj-d0clsepcl 15487 bj-dfom 15495 |
Copyright terms: Public domain | W3C validator |