| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bicomi | Unicode version | ||
| Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| bicomi.1 | 
 | 
| Ref | Expression | 
|---|---|
| bicomi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bicomi.1 | 
. 2
 | |
| 2 | bicom1 131 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 pm4.76 604 mtbir 672 sylnibr 678 sylnbir 680 xchnxbir 682 xchbinxr 684 nbn 700 pm4.25 759 pm4.56 781 pm4.77 800 pm3.2an3 1178 syl3anbr 1293 3an6 1333 truan 1381 truimfal 1421 nottru 1424 sbid 1788 sb10f 2014 cleljust 2173 eqabdv 2325 nfabdw 2358 necon3bbii 2404 rspc2gv 2880 alexeq 2890 ceqsrexbv 2895 clel2 2897 clel4 2900 dfsbcq2 2992 cbvreucsf 3149 dfdif3 3273 raldifb 3303 difab 3432 un0 3484 in0 3485 ss0b 3490 rexdifpr 3650 snssb 3755 snssg 3756 iindif2m 3984 epse 4377 abnex 4482 uniuni 4486 elco 4832 cotr 5051 issref 5052 mptpreima 5163 ralrnmpt 5704 rexrnmpt 5705 eroveu 6685 fprodseq 11748 issrg 13521 toptopon 14254 xmeterval 14671 txmetcnp 14754 dedekindicclemicc 14868 eldvap 14918 fsumdvdsmul 15227 if0ab 15451 bdeq 15469 bd0r 15471 bdcriota 15529 bj-d0clsepcl 15571 bj-dfom 15579 | 
| Copyright terms: Public domain | W3C validator |