HomeHome Intuitionistic Logic Explorer
Theorem List (p. 5 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 401-500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsylanl2 401 A syllogism inference. (Contributed by NM, 1-Jan-2005.)
 |-  ( ph  ->  ch )   &    |-  (
 ( ( ps  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ( ( ps 
 /\  ph )  /\  th )  ->  ta )
 
Theoremsylanr1 402 A syllogism inference. (Contributed by NM, 9-Apr-2005.)
 |-  ( ph  ->  ch )   &    |-  (
 ( ps  /\  ( ch  /\  th ) ) 
 ->  ta )   =>    |-  ( ( ps  /\  ( ph  /\  th )
 )  ->  ta )
 
Theoremsylanr2 403 A syllogism inference. (Contributed by NM, 9-Apr-2005.)
 |-  ( ph  ->  th )   &    |-  (
 ( ps  /\  ( ch  /\  th ) ) 
 ->  ta )   =>    |-  ( ( ps  /\  ( ch  /\  ph )
 )  ->  ta )
 
Theoremsylani 404 A syllogism inference. (Contributed by NM, 2-May-1996.)
 |-  ( ph  ->  ch )   &    |-  ( ps  ->  ( ( ch 
 /\  th )  ->  ta )
 )   =>    |-  ( ps  ->  (
 ( ph  /\  th )  ->  ta ) )
 
Theoremsylan2i 405 A syllogism inference. (Contributed by NM, 1-Aug-1994.)
 |-  ( ph  ->  th )   &    |-  ( ps  ->  ( ( ch 
 /\  th )  ->  ta )
 )   =>    |-  ( ps  ->  (
 ( ch  /\  ph )  ->  ta ) )
 
Theoremsyl2ani 406 A syllogism inference. (Contributed by NM, 3-Aug-1999.)
 |-  ( ph  ->  ch )   &    |-  ( et  ->  th )   &    |-  ( ps  ->  ( ( ch  /\  th )  ->  ta ) )   =>    |-  ( ps  ->  ( ( ph  /\  et )  ->  ta ) )
 
Theoremsylan9 407 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( th  ->  ( ch  ->  ta ) )   =>    |-  ( ( ph  /\  th )  ->  ( ps  ->  ta ) )
 
Theoremsylan9r 408 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( th  ->  ( ch  ->  ta ) )   =>    |-  ( ( th  /\  ph )  ->  ( ps  ->  ta ) )
 
Theoremsyl2anc 409 Syllogism inference combined with contraction. (Contributed by NM, 16-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsyl2anc2 410 Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023.)
 |-  ( ph  ->  ps )   &    |-  ( ps  ->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsylancl 411 Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ph  ->  ps )   &    |-  ch   &    |-  (
 ( ps  /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsylancr 412 Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |- 
 ps   &    |-  ( ph  ->  ch )   &    |-  (
 ( ps  /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsylanblc 413 Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
 |-  ( ph  ->  ps )   &    |-  ch   &    |-  (
 ( ps  /\  ch ) 
 <-> 
 th )   =>    |-  ( ph  ->  th )
 
Theoremsylanblrc 414 Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
 |-  ( ph  ->  ps )   &    |-  ch   &    |-  ( th 
 <->  ( ps  /\  ch ) )   =>    |-  ( ph  ->  th )
 
Theoremsylanbrc 415 Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( th  <->  ( ps  /\  ch ) )   =>    |-  ( ph  ->  th )
 
Theoremsylancb 416 A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
 |-  ( ph  <->  ps )   &    |-  ( ph  <->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsylancbr 417 A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
 |-  ( ps  <->  ph )   &    |-  ( ch  <->  ph )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsylancom 418 Syllogism inference with commutation of antecents. (Contributed by NM, 2-Jul-2008.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ch 
 /\  ps )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  th )
 
Theoremmpdan 419 An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.)
 |-  ( ph  ->  ps )   &    |-  (
 ( ph  /\  ps )  ->  ch )   =>    |-  ( ph  ->  ch )
 
Theoremmpancom 420 An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ( ps  ->  ph )   &    |-  (
 ( ph  /\  ps )  ->  ch )   =>    |-  ( ps  ->  ch )
 
Theoremmpidan 421 A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
 |-  ( ph  ->  ch )   &    |-  (
 ( ( ph  /\  ps )  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theoremmpan 422 An inference based on modus ponens. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ph   &    |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ps  ->  ch )
 
Theoremmpan2 423 An inference based on modus ponens. (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 |- 
 ps   &    |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ph  ->  ch )
 
Theoremmp2an 424 An inference based on modus ponens. (Contributed by NM, 13-Apr-1995.)
 |-  ph   &    |- 
 ps   &    |-  ( ( ph  /\  ps )  ->  ch )   =>    |- 
 ch
 
Theoremmp4an 425 An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.)
 |-  ph   &    |- 
 ps   &    |- 
 ch   &    |- 
 th   &    |-  ( ( ( ph  /\ 
 ps )  /\  ( ch  /\  th ) ) 
 ->  ta )   =>    |- 
 ta
 
Theoremmpan2d 426 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  ( ( ps 
 /\  ch )  ->  th )
 )   =>    |-  ( ph  ->  ( ps  ->  th ) )
 
Theoremmpand 427 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ( ( ps 
 /\  ch )  ->  th )
 )   =>    |-  ( ph  ->  ( ch  ->  th ) )
 
Theoremmpani 428 An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 |- 
 ps   &    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ch  ->  th )
 )
 
Theoremmpan2i 429 An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 |- 
 ch   &    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ps  ->  th )
 )
 
Theoremmp2ani 430 An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.)
 |- 
 ps   &    |- 
 ch   &    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  th )
 
Theoremmp2and 431 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  ( ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  th )
 
Theoremmpanl1 432 An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ph   &    |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ps  /\  ch )  ->  th )
 
Theoremmpanl2 433 An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |- 
 ps   &    |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ch )  ->  th )
 
Theoremmpanl12 434 An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.)
 |-  ph   &    |- 
 ps   &    |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ch  ->  th )
 
Theoremmpanr1 435 An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |- 
 ps   &    |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ch )  ->  th )
 
Theoremmpanr2 436 An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |- 
 ch   &    |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theoremmpanr12 437 An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.)
 |- 
 ps   &    |- 
 ch   &    |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ph  ->  th )
 
Theoremmpanlr1 438 An inference based on modus ponens. (Contributed by NM, 30-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |- 
 ps   &    |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ta )   =>    |-  ( ( ( ph  /\ 
 ch )  /\  th )  ->  ta )
 
Theoremmpbirand 439 Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  ( ps  <->  ( ch  /\  th ) ) )   =>    |-  ( ph  ->  ( ps  <->  th ) )
 
Theoremmpbiran2d 440 Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.)
 |-  ( ph  ->  th )   &    |-  ( ph  ->  ( ps  <->  ( ch  /\  th ) ) )   =>    |-  ( ph  ->  ( ps  <->  ch ) )
 
Theorempm5.74da 441 Distribution of implication over biconditional (deduction form). (Contributed by NM, 4-May-2007.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ph  ->  ( ( ps  ->  ch )  <->  ( ps  ->  th )
 ) )
 
Theoremimdistan 442 Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 ) 
 <->  ( ( ph  /\  ps )  ->  ( ph  /\  ch ) ) )
 
Theoremimdistani 443 Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( ph  /\  ch ) )
 
Theoremimdistanri 444 Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ( ps 
 /\  ph )  ->  ( ch  /\  ph ) )
 
Theoremimdistand 445 Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps  /\  th ) ) )
 
Theoremimdistanda 446 Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
 |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )   =>    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  ( ps  /\  th ) ) )
 
Theorempm5.32d 447 Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.)
 |-  ( ph  ->  ( ps  ->  ( ch  <->  th ) ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch )  <->  ( ps  /\  th ) ) )
 
Theorempm5.32rd 448 Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.)
 |-  ( ph  ->  ( ps  ->  ( ch  <->  th ) ) )   =>    |-  ( ph  ->  ( ( ch  /\  ps )  <->  ( th  /\  ps ) ) )
 
Theorempm5.32da 449 Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch ) 
 <->  ( ps  /\  th ) ) )
 
Theorempm5.32 450 Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) (Revised by NM, 31-Jan-2015.)
 |-  ( ( ph  ->  ( ps  <->  ch ) )  <->  ( ( ph  /\ 
 ps )  <->  ( ph  /\  ch ) ) )
 
Theorempm5.32i 451 Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ph  /\ 
 ps )  <->  ( ph  /\  ch ) )
 
Theorempm5.32ri 452 Distribution of implication over biconditional (inference form). (Contributed by NM, 12-Mar-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ps 
 /\  ph )  <->  ( ch  /\  ph ) )
 
Theorembiadan2 453 Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ps  ->  ( ph  <->  ch ) )   =>    |-  ( ph  <->  ( ps  /\  ch ) )
 
Theoremanbi2i 454 Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  /\  ph )  <->  ( ch  /\  ps ) )
 
Theoremanbi1i 455 Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  /\  ch ) 
 <->  ( ps  /\  ch ) )
 
Theoremanbi2ci 456 Variant of anbi2i 454 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  /\  ch ) 
 <->  ( ch  /\  ps ) )
 
Theoremanbi12i 457 Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  /\  ch ) 
 <->  ( ps  /\  th ) )
 
Theoremanbi12ci 458 Variant of anbi12i 457 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  /\  ch ) 
 <->  ( th  /\  ps ) )
 
Theoremsylan9bb 459 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th  ->  ( ch  <->  ta ) )   =>    |-  ( ( ph  /\ 
 th )  ->  ( ps 
 <->  ta ) )
 
Theoremsylan9bbr 460 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th  ->  ( ch  <->  ta ) )   =>    |-  ( ( th  /\  ph )  ->  ( ps  <->  ta ) )
 
Theoremanbi2d 461 Deduction adding a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ps ) 
 <->  ( th  /\  ch ) ) )
 
Theoremanbi1d 462 Deduction adding a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  /\  th ) 
 <->  ( ch  /\  th ) ) )
 
Theoremanbi1 463 Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ph  /\  ch )  <->  ( ps  /\  ch )
 ) )
 
Theoremanbi2 464 Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 16-Nov-2013.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ch  /\  ph )  <->  ( ch  /\  ps )
 ) )
 
Theoremanbi1cd 465 Introduce a proposition as left conjunct on the left-hand side and right conjunct on the right-hand side of an equivalence. Deduction form. (Contributed by Peter Mazsa, 22-May-2021.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ps ) 
 <->  ( ch  /\  th ) ) )
 
Theorembianass 466 An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ( et  /\  ph )  <->  ( ( et 
 /\  ps )  /\  ch ) )
 
Theorembianassc 467 An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ( et  /\  ph )  <->  ( ( ps 
 /\  et )  /\  ch ) )
 
Theoreman21 468 Swap two conjuncts. (Contributed by Peter Mazsa, 18-Sep-2022.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch ) 
 <->  ( ps  /\  ( ph  /\  ch ) ) )
 
Theorembitr 469 Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  <->  ps )  /\  ( ps  <->  ch ) )  ->  ( ph  <->  ch ) )
 
Theoremanbi12d 470 Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  /\  th ) 
 <->  ( ch  /\  ta ) ) )
 
Theoremmpan10 471 Modus ponens mixed with several conjunctions. (Contributed by Jim Kingdon, 7-Jan-2018.)
 |-  ( ( ( (
 ph  ->  ps )  /\  ch )  /\  ph )  ->  ( ps  /\  ch ) )
 
Theorempm5.3 472 Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ch )  <->  ( ( ph  /\  ps )  ->  ( ph  /\  ch ) ) )
 
Theoremadantll 473 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ( th  /\  ph )  /\  ps )  ->  ch )
 
Theoremadantlr 474 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ( ph  /\ 
 th )  /\  ps )  ->  ch )
 
Theoremadantrl 475 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ph  /\  ( th  /\  ps ) ) 
 ->  ch )
 
Theoremadantrr 476 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ph  /\  ( ps  /\  th ) ) 
 ->  ch )
 
Theoremadantlll 477 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ( ta  /\  ph )  /\  ps )  /\  ch )  ->  th )
 
Theoremadantllr 478 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( (
 ph  /\  ta )  /\  ps )  /\  ch )  ->  th )
 
Theoremadantlrl 479 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ph  /\  ( ta  /\  ps ) )  /\  ch )  ->  th )
 
Theoremadantlrr 480 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ph  /\  ( ps  /\  ta ) )  /\  ch )  ->  th )
 
Theoremadantrll 481 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  (
 ( ta  /\  ps )  /\  ch ) ) 
 ->  th )
 
Theoremadantrlr 482 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  (
 ( ps  /\  ta )  /\  ch ) ) 
 ->  th )
 
Theoremadantrrl 483 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ( ta  /\  ch ) ) )  ->  th )
 
Theoremadantrrr 484 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ( ch  /\  ta ) ) )  ->  th )
 
Theoremad2antrr 485 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Wolf Lammen, 20-Nov-2012.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ph  /\  ch )  /\  th )  ->  ps )
 
Theoremad2antlr 486 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Wolf Lammen, 20-Nov-2012.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ch  /\  ph )  /\  th )  ->  ps )
 
Theoremad2antrl 487 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ( ph  /\  th ) ) 
 ->  ps )
 
Theoremad2antll 488 Deduction adding conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ( th  /\  ph ) )  ->  ps )
 
Theoremad3antrrr 489 Deduction adding three conjuncts to antecedent. (Contributed by NM, 28-Jul-2012.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ph  /\ 
 ch )  /\  th )  /\  ta )  ->  ps )
 
Theoremad3antlr 490 Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ch 
 /\  ph )  /\  th )  /\  ta )  ->  ps )
 
Theoremad4antr 491 Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( (
 ph  /\  ch )  /\  th )  /\  ta )  /\  et )  ->  ps )
 
Theoremad4antlr 492 Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  ->  ps )
 
Theoremad5antr 493 Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ph  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  ->  ps )
 
Theoremad5antlr 494 Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  ->  ps )
 
Theoremad6antr 495 Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ph  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  ->  ps )
 
Theoremad6antlr 496 Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  ->  ps )
 
Theoremad7antr 497 Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ph  /\ 
 ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  ->  ps )
 
Theoremad7antlr 498 Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ch 
 /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  ->  ps )
 
Theoremad8antr 499 Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( (
 ph  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  ->  ps )
 
Theoremad8antlr 500 Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  ->  ps )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >