Theorem List for Intuitionistic Logic Explorer - 401-500   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | anass 401 | 
Associative law for conjunction.  Theorem *4.32 of [WhiteheadRussell]
     p. 118.  (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf
     Lammen, 24-Nov-2012.)
 | 
                                  | 
|   | 
| Theorem | sylanl1 402 | 
A syllogism inference.  (Contributed by NM, 10-Mar-2005.)
 | 
                                                                  | 
|   | 
| Theorem | sylanl2 403 | 
A syllogism inference.  (Contributed by NM, 1-Jan-2005.)
 | 
                                                                  | 
|   | 
| Theorem | sylanr1 404 | 
A syllogism inference.  (Contributed by NM, 9-Apr-2005.)
 | 
                                                              
    | 
|   | 
| Theorem | sylanr2 405 | 
A syllogism inference.  (Contributed by NM, 9-Apr-2005.)
 | 
                                                              
    | 
|   | 
| Theorem | sylani 406 | 
A syllogism inference.  (Contributed by NM, 2-May-1996.)
 | 
                                                      
            | 
|   | 
| Theorem | sylan2i 407 | 
A syllogism inference.  (Contributed by NM, 1-Aug-1994.)
 | 
                                                                  | 
|   | 
| Theorem | syl2ani 408 | 
A syllogism inference.  (Contributed by NM, 3-Aug-1999.)
 | 
                                                                                  | 
|   | 
| Theorem | sylan9 409 | 
Nested syllogism inference conjoining dissimilar antecedents.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Andrew Salmon,
       7-May-2011.)
 | 
                                                                  | 
|   | 
| Theorem | sylan9r 410 | 
Nested syllogism inference conjoining dissimilar antecedents.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                        
          | 
|   | 
| Theorem | syl2anc 411 | 
Syllogism inference combined with contraction.  (Contributed by NM,
       16-Mar-2012.)
 | 
                                                                | 
|   | 
| Theorem | syl2anc2 412 | 
Double syllogism inference combined with contraction.  (Contributed by
       BTernaryTau, 29-Sep-2023.)
 | 
                                                                | 
|   | 
| Theorem | sylancl 413 | 
Syllogism inference combined with modus ponens.  (Contributed by Jeff
       Madsen, 2-Sep-2009.)
 | 
                                                          | 
|   | 
| Theorem | sylancr 414 | 
Syllogism inference combined with modus ponens.  (Contributed by Jeff
       Madsen, 2-Sep-2009.)
 | 
                                                          | 
|   | 
| Theorem | sylanblc 415 | 
Syllogism inference combined with a biconditional.  (Contributed by BJ,
       25-Apr-2019.)
 | 
                                                          | 
|   | 
| Theorem | sylanblrc 416 | 
Syllogism inference combined with a biconditional.  (Contributed by BJ,
       25-Apr-2019.)
 | 
                                                          | 
|   | 
| Theorem | sylanbrc 417 | 
Syllogism inference.  (Contributed by Jeff Madsen, 2-Sep-2009.)
 | 
                                                                | 
|   | 
| Theorem | sylancb 418 | 
A syllogism inference combined with contraction.  (Contributed by NM,
       3-Sep-2004.)
 | 
                                                                | 
|   | 
| Theorem | sylancbr 419 | 
A syllogism inference combined with contraction.  (Contributed by NM,
       3-Sep-2004.)
 | 
                                                                | 
|   | 
| Theorem | sylancom 420 | 
Syllogism inference with commutation of antecents.  (Contributed by NM,
       2-Jul-2008.)
 | 
                                                 
           | 
|   | 
| Theorem | mpdan 421 | 
An inference based on modus ponens.  (Contributed by NM, 23-May-1999.)
       (Proof shortened by Wolf Lammen, 22-Nov-2012.)
 | 
                     
                           | 
|   | 
| Theorem | mpancom 422 | 
An inference based on modus ponens with commutation of antecedents.
       (Contributed by NM, 28-Oct-2003.)  (Proof shortened by Wolf Lammen,
       7-Apr-2013.)
 | 
                     
                           | 
|   | 
| Theorem | mpidan 423 | 
A deduction which "stacks" a hypothesis.  (Contributed by Stanislas
       Polu, 9-Mar-2020.)  (Proof shortened by Wolf Lammen, 28-Mar-2021.)
 | 
                                                            | 
|   | 
| Theorem | mpan 424 | 
An inference based on modus ponens.  (Contributed by NM, 30-Aug-1993.)
       (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 | 
                                          | 
|   | 
| Theorem | mpan2 425 | 
An inference based on modus ponens.  (Contributed by NM, 16-Sep-1993.)
       (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 | 
                                          | 
|   | 
| Theorem | mp2an 426 | 
An inference based on modus ponens.  (Contributed by NM,
       13-Apr-1995.)
 | 
                                              | 
|   | 
| Theorem | mp4an 427 | 
An inference based on modus ponens.  (Contributed by Jeff Madsen,
       15-Jun-2011.)
 | 
                                                                              | 
|   | 
| Theorem | mpan2d 428 | 
A deduction based on modus ponens.  (Contributed by NM, 12-Dec-2004.)
 | 
                                                            | 
|   | 
| Theorem | mpand 429 | 
A deduction based on modus ponens.  (Contributed by NM, 12-Dec-2004.)
       (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 | 
                                                            | 
|   | 
| Theorem | mpani 430 | 
An inference based on modus ponens.  (Contributed by NM, 10-Apr-1994.)
       (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 | 
                                                 
     | 
|   | 
| Theorem | mpan2i 431 | 
An inference based on modus ponens.  (Contributed by NM, 10-Apr-1994.)
       (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 | 
                                                 
     | 
|   | 
| Theorem | mp2ani 432 | 
An inference based on modus ponens.  (Contributed by NM,
       12-Dec-2004.)
 | 
                                                          | 
|   | 
| Theorem | mp2and 433 | 
A deduction based on modus ponens.  (Contributed by NM, 12-Dec-2004.)
 | 
                                                                      | 
|   | 
| Theorem | mpanl1 434 | 
An inference based on modus ponens.  (Contributed by NM, 16-Aug-1994.)
       (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 | 
                                                  
    | 
|   | 
| Theorem | mpanl2 435 | 
An inference based on modus ponens.  (Contributed by NM, 16-Aug-1994.)
       (Proof shortened by Andrew Salmon, 7-May-2011.)
 | 
                                                      | 
|   | 
| Theorem | mpanl12 436 | 
An inference based on modus ponens.  (Contributed by NM,
       13-Jul-2005.)
 | 
                                                          | 
|   | 
| Theorem | mpanr1 437 | 
An inference based on modus ponens.  (Contributed by NM, 3-May-1994.)
       (Proof shortened by Andrew Salmon, 7-May-2011.)
 | 
                                                      | 
|   | 
| Theorem | mpanr2 438 | 
An inference based on modus ponens.  (Contributed by NM, 3-May-1994.)
       (Proof shortened by Andrew Salmon, 7-May-2011.)  (Proof shortened by
       Wolf Lammen, 7-Apr-2013.)
 | 
                                                      | 
|   | 
| Theorem | mpanr12 439 | 
An inference based on modus ponens.  (Contributed by NM,
       24-Jul-2009.)
 | 
                                                          | 
|   | 
| Theorem | mpanlr1 440 | 
An inference based on modus ponens.  (Contributed by NM, 30-Dec-2004.)
       (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 | 
                           
                                       | 
|   | 
| Theorem | mpbirand 441 | 
Detach truth from conjunction in biconditional.  (Contributed by Glauco
       Siliprandi, 3-Mar-2021.)
 | 
                                                            | 
|   | 
| Theorem | mpbiran2d 442 | 
Detach truth from conjunction in biconditional.  Deduction form.
       (Contributed by Peter Mazsa, 24-Sep-2022.)
 | 
                                                            | 
|   | 
| Theorem | pm5.74da 443 | 
Distribution of implication over biconditional (deduction form).
       (Contributed by NM, 4-May-2007.)
 | 
                                                  
      | 
|   | 
| Theorem | imdistan 444 | 
Distribution of implication with conjunction.  (Contributed by NM,
     31-May-1999.)  (Proof shortened by Wolf Lammen, 6-Dec-2012.)
 | 
            
                            | 
|   | 
| Theorem | imdistani 445 | 
Distribution of implication with conjunction.  (Contributed by NM,
       1-Aug-1994.)
 | 
                                            | 
|   | 
| Theorem | imdistanri 446 | 
Distribution of implication with conjunction.  (Contributed by NM,
       8-Jan-2002.)
 | 
                                            | 
|   | 
| Theorem | imdistand 447 | 
Distribution of implication with conjunction (deduction form).
       (Contributed by NM, 27-Aug-2004.)
 | 
                                                        | 
|   | 
| Theorem | imdistanda 448 | 
Distribution of implication with conjunction (deduction version with
       conjoined antecedent).  (Contributed by Jeff Madsen, 19-Jun-2011.)
 | 
                                                        | 
|   | 
| Theorem | syldanl 449 | 
A syllogism deduction with conjoined antecedents.  (Contributed by Jeff
       Madsen, 20-Jun-2011.)
 | 
                              
                                          | 
|   | 
| Theorem | pm5.32d 450 | 
Distribution of implication over biconditional (deduction form).
       (Contributed by NM, 29-Oct-1996.)  (Revised by NM, 31-Jan-2015.)
 | 
                                  
                      | 
|   | 
| Theorem | pm5.32rd 451 | 
Distribution of implication over biconditional (deduction form).
       (Contributed by NM, 25-Dec-2004.)
 | 
                                  
                      | 
|   | 
| Theorem | pm5.32da 452 | 
Distribution of implication over biconditional (deduction form).
       (Contributed by NM, 9-Dec-2006.)
 | 
                                                        | 
|   | 
| Theorem | pm5.32 453 | 
Distribution of implication over biconditional.  Theorem *5.32 of
     [WhiteheadRussell] p. 125. 
(Contributed by NM, 1-Aug-1994.)  (Revised by
     NM, 31-Jan-2015.)
 | 
                                        | 
|   | 
| Theorem | pm5.32i 454 | 
Distribution of implication over biconditional (inference form).
       (Contributed by NM, 1-Aug-1994.)
 | 
                                            | 
|   | 
| Theorem | pm5.32ri 455 | 
Distribution of implication over biconditional (inference form).
       (Contributed by NM, 12-Mar-1995.)
 | 
                                            | 
|   | 
| Theorem | biadan2 456 | 
Add a conjunction to an equivalence.  (Contributed by Jeff Madsen,
       20-Jun-2011.)
 | 
                                                      | 
|   | 
| Theorem | anbi2i 457 | 
Introduce a left conjunct to both sides of a logical equivalence.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       16-Nov-2013.)
 | 
                                      | 
|   | 
| Theorem | anbi1i 458 | 
Introduce a right conjunct to both sides of a logical equivalence.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       16-Nov-2013.)
 | 
                                      | 
|   | 
| Theorem | anbi2ci 459 | 
Variant of anbi2i 457 with commutation.  (Contributed by Jonathan
       Ben-Naim, 3-Jun-2011.)  (Proof shortened by Andrew Salmon,
       14-Jun-2011.)
 | 
                                      | 
|   | 
| Theorem | anbi12i 460 | 
Conjoin both sides of two equivalences.  (Contributed by NM,
       5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | anbi12ci 461 | 
Variant of anbi12i 460 with commutation.  (Contributed by Jonathan
       Ben-Naim, 3-Jun-2011.)
 | 
                                                      | 
|   | 
| Theorem | sylan9bb 462 | 
Nested syllogism inference conjoining dissimilar antecedents.
       (Contributed by NM, 4-Mar-1995.)
 | 
                                                                  | 
|   | 
| Theorem | sylan9bbr 463 | 
Nested syllogism inference conjoining dissimilar antecedents.
       (Contributed by NM, 4-Mar-1995.)
 | 
                                                      
            | 
|   | 
| Theorem | anbi2d 464 | 
Deduction adding a left conjunct to both sides of a logical equivalence.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       16-Nov-2013.)
 | 
                                                  | 
|   | 
| Theorem | anbi1d 465 | 
Deduction adding a right conjunct to both sides of a logical
       equivalence.  (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf
       Lammen, 16-Nov-2013.)
 | 
                                                  | 
|   | 
| Theorem | anbi1 466 | 
Introduce a right conjunct to both sides of a logical equivalence.
     Theorem *4.36 of [WhiteheadRussell] p. 118.  (Contributed
by NM,
     3-Jan-2005.)
 | 
                
                  | 
|   | 
| Theorem | anbi2 467 | 
Introduce a left conjunct to both sides of a logical equivalence.
     (Contributed by NM, 16-Nov-2013.)
 | 
                                  | 
|   | 
| Theorem | anbi1cd 468 | 
Introduce a proposition as left conjunct on the left-hand side and right
       conjunct on the right-hand side of an equivalence.  Deduction form.
       (Contributed by Peter Mazsa, 22-May-2021.)
 | 
                                                  | 
|   | 
| Theorem | bianass 469 | 
An inference to merge two lists of conjuncts.  (Contributed by Giovanni
       Mascellani, 23-May-2019.)
 | 
                                                  | 
|   | 
| Theorem | bianassc 470 | 
An inference to merge two lists of conjuncts.  (Contributed by Peter
       Mazsa, 24-Sep-2022.)
 | 
                                                  | 
|   | 
| Theorem | an21 471 | 
Swap two conjuncts.  (Contributed by Peter Mazsa, 18-Sep-2022.)
 | 
                                  | 
|   | 
| Theorem | bitr 472 | 
Theorem *4.22 of [WhiteheadRussell] p.
117.  (Contributed by NM,
     3-Jan-2005.)
 | 
                                  | 
|   | 
| Theorem | anbi12d 473 | 
Deduction joining two equivalences to form equivalence of conjunctions.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                                        | 
|   | 
| Theorem | mpan10 474 | 
Modus ponens mixed with several conjunctions.  (Contributed by Jim
     Kingdon, 7-Jan-2018.)
 | 
                                  | 
|   | 
| Theorem | pm5.3 475 | 
Theorem *5.3 of [WhiteheadRussell] p.
125.  (Contributed by NM,
     3-Jan-2005.)  (Proof shortened by Andrew Salmon, 7-May-2011.)
 | 
                                        | 
|   | 
| Theorem | adantll 476 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       4-May-1994.)  (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 | 
                                 
           | 
|   | 
| Theorem | adantlr 477 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       4-May-1994.)  (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 | 
                                            | 
|   | 
| Theorem | adantrl 478 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       4-May-1994.)  (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 | 
                                            | 
|   | 
| Theorem | adantrr 479 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       4-May-1994.)  (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 | 
                                            | 
|   | 
| Theorem | adantlll 480 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       26-Dec-2004.)  (Proof shortened by Wolf Lammen, 2-Dec-2012.)
 | 
                                                        | 
|   | 
| Theorem | adantllr 481 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       26-Dec-2004.)  (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 | 
                                     
                   | 
|   | 
| Theorem | adantlrl 482 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       26-Dec-2004.)  (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 | 
                                             
           | 
|   | 
| Theorem | adantlrr 483 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       26-Dec-2004.)  (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 | 
                                             
           | 
|   | 
| Theorem | adantrll 484 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       26-Dec-2004.)  (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 | 
                                                        | 
|   | 
| Theorem | adantrlr 485 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       26-Dec-2004.)  (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 | 
                                                        | 
|   | 
| Theorem | adantrrl 486 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       26-Dec-2004.)  (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 | 
                                                        | 
|   | 
| Theorem | adantrrr 487 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       26-Dec-2004.)  (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 | 
                                                        | 
|   | 
| Theorem | ad2antrr 488 | 
Deduction adding two conjuncts to antecedent.  (Contributed by NM,
       19-Oct-1999.)  (Proof shortened by Wolf Lammen, 20-Nov-2012.)
 | 
                                      | 
|   | 
| Theorem | ad2antlr 489 | 
Deduction adding two conjuncts to antecedent.  (Contributed by NM,
       19-Oct-1999.)  (Proof shortened by Wolf Lammen, 20-Nov-2012.)
 | 
                                      | 
|   | 
| Theorem | ad2antrl 490 | 
Deduction adding two conjuncts to antecedent.  (Contributed by NM,
       19-Oct-1999.)
 | 
                                      | 
|   | 
| Theorem | ad2antll 491 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       19-Oct-1999.)
 | 
                                      | 
|   | 
| Theorem | ad3antrrr 492 | 
Deduction adding three conjuncts to antecedent.  (Contributed by NM,
       28-Jul-2012.)
 | 
                                            | 
|   | 
| Theorem | ad3antlr 493 | 
Deduction adding three conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 5-Jan-2017.)
 | 
                                            | 
|   | 
| Theorem | ad4antr 494 | 
Deduction adding 4 conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 4-Jan-2017.)
 | 
                          
                        | 
|   | 
| Theorem | ad4antlr 495 | 
Deduction adding 4 conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 5-Jan-2017.)
 | 
                                                  | 
|   | 
| Theorem | ad5antr 496 | 
Deduction adding 5 conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 4-Jan-2017.)
 | 
                                                        | 
|   | 
| Theorem | ad5antlr 497 | 
Deduction adding 5 conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 5-Jan-2017.)
 | 
                                                    
    | 
|   | 
| Theorem | ad6antr 498 | 
Deduction adding 6 conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 4-Jan-2017.)
 | 
                                                              | 
|   | 
| Theorem | ad6antlr 499 | 
Deduction adding 6 conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 5-Jan-2017.)
 | 
                                                          
    | 
|   | 
| Theorem | ad7antr 500 | 
Deduction adding 7 conjuncts to antecedent.  (Contributed by Mario
       Carneiro, 4-Jan-2017.)
 | 
                                               
                     |