ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biid Unicode version

Theorem biid 170
Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
biid  |-  ( ph  <->  ph )

Proof of Theorem biid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
21, 1impbii 125 1  |-  ( ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  biidd  171  3anbi1i  1180  3anbi2i  1181  3anbi3i  1182  trubitru  1405  falbifal  1408  eqid  2165  abid2  2287  abid2f  2334  ceqsexg  2854  nnwetri  6881  exmidontriimlem3  7179  fsum2d  11376  fprod2d  11564  isstructim  12408
  Copyright terms: Public domain W3C validator