ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biid Unicode version

Theorem biid 171
Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
biid  |-  ( ph  <->  ph )

Proof of Theorem biid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
21, 1impbii 126 1  |-  ( ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biidd  172  an21  471  3anbi1i  1193  3anbi2i  1194  3anbi3i  1195  trubitru  1435  falbifal  1438  eqid  2205  abid2  2326  abid2f  2374  ceqsexg  2901  nnwetri  7015  isacnm  7317  exmidontriimlem3  7337  fsum2d  11779  fprod2d  11967  isstructim  12879  lmodvscl  14100  lgsquad2  15593
  Copyright terms: Public domain W3C validator