| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biid | Unicode version | ||
| Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1, 1 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biidd 172 an21 471 3anbi1i 1193 3anbi2i 1194 3anbi3i 1195 trubitru 1435 falbifal 1438 eqid 2205 abid2 2326 abid2f 2374 ceqsexg 2901 nnwetri 7015 isacnm 7317 exmidontriimlem3 7337 fsum2d 11779 fprod2d 11967 isstructim 12879 lmodvscl 14100 lgsquad2 15593 |
| Copyright terms: Public domain | W3C validator |