ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biid Unicode version

Theorem biid 171
Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
biid  |-  ( ph  <->  ph )

Proof of Theorem biid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
21, 1impbii 126 1  |-  ( ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biidd  172  an21  471  3anbi1i  1190  3anbi2i  1191  3anbi3i  1192  trubitru  1415  falbifal  1418  eqid  2177  abid2  2298  abid2f  2345  ceqsexg  2866  nnwetri  6915  exmidontriimlem3  7222  fsum2d  11443  fprod2d  11631  isstructim  12476  lmodvscl  13395
  Copyright terms: Public domain W3C validator