| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biid | Unicode version | ||
| Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1, 1 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biidd 172 an21 471 3anbi1i 1193 3anbi2i 1194 3anbi3i 1195 trubitru 1435 falbifal 1438 eqid 2207 abid2 2328 abid2f 2376 ceqsexg 2908 nnwetri 7039 isacnm 7346 exmidontriimlem3 7366 fsum2d 11861 fprod2d 12049 isstructim 12961 lmodvscl 14182 lgsquad2 15675 |
| Copyright terms: Public domain | W3C validator |