ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biid Unicode version

Theorem biid 171
Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
biid  |-  ( ph  <->  ph )

Proof of Theorem biid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
21, 1impbii 126 1  |-  ( ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biidd  172  an21  471  3anbi1i  1192  3anbi2i  1193  3anbi3i  1194  trubitru  1426  falbifal  1429  eqid  2196  abid2  2317  abid2f  2365  ceqsexg  2892  nnwetri  6977  exmidontriimlem3  7288  fsum2d  11584  fprod2d  11772  isstructim  12668  lmodvscl  13837  lgsquad2  15291
  Copyright terms: Public domain W3C validator