ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biid Unicode version

Theorem biid 171
Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
biid  |-  ( ph  <->  ph )

Proof of Theorem biid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
21, 1impbii 126 1  |-  ( ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biidd  172  an21  471  3anbi1i  1214  3anbi2i  1215  3anbi3i  1216  trubitru  1457  falbifal  1460  eqid  2229  abid2  2350  abid2f  2398  ceqsexg  2931  nnwetri  7078  isacnm  7385  exmidontriimlem3  7405  fsum2d  11946  fprod2d  12134  isstructim  13046  lmodvscl  14269  lgsquad2  15762
  Copyright terms: Public domain W3C validator