| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biid | Unicode version | ||
| Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1, 1 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biidd 172 an21 471 3anbi1i 1193 3anbi2i 1194 3anbi3i 1195 trubitru 1435 falbifal 1438 eqid 2205 abid2 2326 abid2f 2374 ceqsexg 2901 nnwetri 7013 isacnm 7315 exmidontriimlem3 7335 fsum2d 11746 fprod2d 11934 isstructim 12846 lmodvscl 14067 lgsquad2 15560 |
| Copyright terms: Public domain | W3C validator |