ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biid Unicode version

Theorem biid 171
Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
biid  |-  ( ph  <->  ph )

Proof of Theorem biid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
21, 1impbii 126 1  |-  ( ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biidd  172  an21  471  3anbi1i  1193  3anbi2i  1194  3anbi3i  1195  trubitru  1435  falbifal  1438  eqid  2207  abid2  2328  abid2f  2376  ceqsexg  2908  nnwetri  7039  isacnm  7346  exmidontriimlem3  7366  fsum2d  11861  fprod2d  12049  isstructim  12961  lmodvscl  14182  lgsquad2  15675
  Copyright terms: Public domain W3C validator