| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biid | Unicode version | ||
| Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1, 1 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biidd 172 an21 471 3anbi1i 1192 3anbi2i 1193 3anbi3i 1194 trubitru 1426 falbifal 1429 eqid 2196 abid2 2317 abid2f 2365 ceqsexg 2892 nnwetri 6979 exmidontriimlem3 7293 fsum2d 11603 fprod2d 11791 isstructim 12703 lmodvscl 13887 lgsquad2 15350 |
| Copyright terms: Public domain | W3C validator |