ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biid Unicode version

Theorem biid 170
Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
biid  |-  ( ph  <->  ph )

Proof of Theorem biid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
21, 1impbii 125 1  |-  ( ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  biidd  171  an21  468  3anbi1i  1185  3anbi2i  1186  3anbi3i  1187  trubitru  1410  falbifal  1413  eqid  2170  abid2  2291  abid2f  2338  ceqsexg  2858  nnwetri  6893  exmidontriimlem3  7200  fsum2d  11398  fprod2d  11586  isstructim  12430
  Copyright terms: Public domain W3C validator