ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bianassc Unicode version

Theorem bianassc 467
Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypothesis
Ref Expression
bianass.1  |-  ( ph  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
bianassc  |-  ( ( et  /\  ph )  <->  ( ( ps  /\  et )  /\  ch ) )

Proof of Theorem bianassc
StepHypRef Expression
1 bianass.1 . . 3  |-  ( ph  <->  ( ps  /\  ch )
)
21bianass 466 . 2  |-  ( ( et  /\  ph )  <->  ( ( et  /\  ps )  /\  ch ) )
3 ancom 264 . . 3  |-  ( ( et  /\  ps )  <->  ( ps  /\  et ) )
43anbi1i 455 . 2  |-  ( ( ( et  /\  ps )  /\  ch )  <->  ( ( ps  /\  et )  /\  ch ) )
52, 4bitri 183 1  |-  ( ( et  /\  ph )  <->  ( ( ps  /\  et )  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  an21  468
  Copyright terms: Public domain W3C validator