| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anandis | Unicode version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandis.1 |
|
| Ref | Expression |
|---|---|
| anandis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandis.1 |
. . 3
| |
| 2 | 1 | an4s 588 |
. 2
|
| 3 | 2 | anabsan 575 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3impdi 1304 dff13 5818 f1oiso 5876 ltapig 7422 ltmpig 7423 faclbnd 10850 tgcl 14384 |
| Copyright terms: Public domain | W3C validator |