| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iddvds | Unicode version | ||
| Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| iddvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9390 |
. . 3
| |
| 2 | 1 | mulid2d 8104 |
. 2
|
| 3 | 1z 9411 |
. . . 4
| |
| 4 | dvds0lem 12162 |
. . . 4
| |
| 5 | 3, 4 | mp3anl1 1344 |
. . 3
|
| 6 | 5 | anabsan 575 |
. 2
|
| 7 | 2, 6 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-z 9386 df-dvds 12149 |
| This theorem is referenced by: dvdsadd 12197 dvds1 12214 dvdsext 12216 z2even 12275 n2dvds3 12276 gcd0id 12350 bezoutlemmo 12377 bezoutlemsup 12380 gcdzeq 12393 mulgcddvds 12466 1idssfct 12487 isprm2lem 12488 dvdsprime 12494 3prm 12500 dvdsprm 12509 exprmfct 12510 coprm 12516 isprm6 12519 pcidlem 12696 pcprmpw2 12706 pcprmpw 12707 znidomb 14470 sgmnncl 15510 perfect1 15520 perfectlem2 15522 2sqlem6 15647 |
| Copyright terms: Public domain | W3C validator |