ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iddvds Unicode version

Theorem iddvds 11986
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
iddvds  |-  ( N  e.  ZZ  ->  N  ||  N )

Proof of Theorem iddvds
StepHypRef Expression
1 zcn 9348 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
21mulid2d 8062 . 2  |-  ( N  e.  ZZ  ->  (
1  x.  N )  =  N )
3 1z 9369 . . . 4  |-  1  e.  ZZ
4 dvds0lem 11983 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  x.  N
)  =  N )  ->  N  ||  N
)
53, 4mp3anl1 1342 . . 3  |-  ( ( ( N  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  x.  N )  =  N )  ->  N  ||  N
)
65anabsan 575 . 2  |-  ( ( N  e.  ZZ  /\  ( 1  x.  N
)  =  N )  ->  N  ||  N
)
72, 6mpdan 421 1  |-  ( N  e.  ZZ  ->  N  ||  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   1c1 7897    x. cmul 7901   ZZcz 9343    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-z 9344  df-dvds 11970
This theorem is referenced by:  dvdsadd  12018  dvds1  12035  dvdsext  12037  z2even  12096  n2dvds3  12097  gcd0id  12171  bezoutlemmo  12198  bezoutlemsup  12201  gcdzeq  12214  mulgcddvds  12287  1idssfct  12308  isprm2lem  12309  dvdsprime  12315  3prm  12321  dvdsprm  12330  exprmfct  12331  coprm  12337  isprm6  12340  pcidlem  12517  pcprmpw2  12527  pcprmpw  12528  znidomb  14290  sgmnncl  15308  perfect1  15318  perfectlem2  15320  2sqlem6  15445
  Copyright terms: Public domain W3C validator