Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iddvds | Unicode version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9173 | . . 3 | |
2 | 1 | mulid2d 7897 | . 2 |
3 | 1z 9194 | . . . 4 | |
4 | dvds0lem 11701 | . . . 4 | |
5 | 3, 4 | mp3anl1 1313 | . . 3 |
6 | 5 | anabsan 565 | . 2 |
7 | 2, 6 | mpdan 418 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 class class class wbr 3966 (class class class)co 5825 c1 7734 cmul 7738 cz 9168 cdvds 11687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-addcom 7833 ax-mulcom 7834 ax-addass 7835 ax-mulass 7836 ax-distr 7837 ax-i2m1 7838 ax-0lt1 7839 ax-1rid 7840 ax-0id 7841 ax-rnegex 7842 ax-cnre 7844 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 ax-pre-ltadd 7849 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-br 3967 df-opab 4027 df-id 4254 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-iota 5136 df-fun 5173 df-fv 5179 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-sub 8049 df-neg 8050 df-inn 8835 df-z 9169 df-dvds 11688 |
This theorem is referenced by: dvdsadd 11734 dvds1 11749 dvdsext 11751 z2even 11809 n2dvds3 11810 gcd0id 11867 bezoutlemmo 11894 bezoutlemsup 11897 gcdzeq 11910 mulgcddvds 11975 1idssfct 11996 isprm2lem 11997 dvdsprime 12003 3prm 12009 dvdsprm 12018 exprmfct 12019 coprm 12023 isprm6 12026 |
Copyright terms: Public domain | W3C validator |