| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iddvds | Unicode version | ||
| Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| iddvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9439 |
. . 3
| |
| 2 | 1 | mulid2d 8153 |
. 2
|
| 3 | 1z 9460 |
. . . 4
| |
| 4 | dvds0lem 12298 |
. . . 4
| |
| 5 | 3, 4 | mp3anl1 1365 |
. . 3
|
| 6 | 5 | anabsan 575 |
. 2
|
| 7 | 2, 6 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-z 9435 df-dvds 12285 |
| This theorem is referenced by: dvdsadd 12333 dvds1 12350 dvdsext 12352 z2even 12411 n2dvds3 12412 gcd0id 12486 bezoutlemmo 12513 bezoutlemsup 12516 gcdzeq 12529 mulgcddvds 12602 1idssfct 12623 isprm2lem 12624 dvdsprime 12630 3prm 12636 dvdsprm 12645 exprmfct 12646 coprm 12652 isprm6 12655 pcidlem 12832 pcprmpw2 12842 pcprmpw 12843 znidomb 14607 sgmnncl 15647 perfect1 15657 perfectlem2 15659 2sqlem6 15784 |
| Copyright terms: Public domain | W3C validator |