| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 |
|
| sylanb.2 |
|
| Ref | Expression |
|---|---|
| sylanb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylanb.2 |
. 2
| |
| 4 | 2, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2170 eqtr2 2248 pm13.181 2482 rmob 3122 disjne 3545 seex 4426 tron 4473 fssres 5501 funbrfvb 5674 funopfvb 5675 fvelrnb 5681 fvco 5704 fvimacnvi 5749 ffvresb 5798 funresdfunsnss 5842 fvtp2g 5848 fvtp2 5851 fnex 5861 funex 5862 1st2nd 6327 dftpos4 6409 nnmsucr 6634 nnmcan 6665 xpmapenlem 7010 fundmfibi 7105 sup3exmid 9104 nzadd 9499 peano5uzti 9555 fnn0ind 9563 uztrn2 9740 irradd 9841 xltnegi 10031 xaddnemnf 10053 xaddnepnf 10054 xaddcom 10057 xnegdi 10064 elioore 10108 uzsubsubfz1 10244 fzo1fzo0n0 10383 elfzonelfzo 10436 qbtwnxr 10477 faclbnd 10963 faclbnd3 10965 swrdccat3b 11272 dvdsprime 12644 pcgcd 12852 znf1o 14615 restuni 14846 stoig 14847 cnnei 14906 tgioo 15228 divcnap 15239 ivthdich 15327 lgsdi 15716 bj-indind 16295 |
| Copyright terms: Public domain | W3C validator |