| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) | 
| Ref | Expression | 
|---|---|
| sylanb.1 | 
 | 
| sylanb.2 | 
 | 
| Ref | Expression | 
|---|---|
| sylanb | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylanb.1 | 
. . 3
 | |
| 2 | 1 | biimpi 120 | 
. 2
 | 
| 3 | sylanb.2 | 
. 2
 | |
| 4 | 2, 3 | sylan 283 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2137 eqtr2 2215 pm13.181 2449 rmob 3082 disjne 3504 seex 4370 tron 4417 fssres 5433 funbrfvb 5603 funopfvb 5604 fvelrnb 5608 fvco 5631 fvimacnvi 5676 ffvresb 5725 funresdfunsnss 5765 fvtp2g 5771 fvtp2 5774 fnex 5784 funex 5785 1st2nd 6239 dftpos4 6321 nnmsucr 6546 nnmcan 6577 xpmapenlem 6910 fundmfibi 7004 sup3exmid 8984 nzadd 9378 peano5uzti 9434 fnn0ind 9442 uztrn2 9619 irradd 9720 xltnegi 9910 xaddnemnf 9932 xaddnepnf 9933 xaddcom 9936 xnegdi 9943 elioore 9987 uzsubsubfz1 10123 fzo1fzo0n0 10259 elfzonelfzo 10306 qbtwnxr 10347 faclbnd 10833 faclbnd3 10835 dvdsprime 12290 pcgcd 12498 znf1o 14207 restuni 14408 stoig 14409 cnnei 14468 tgioo 14790 divcnap 14801 ivthdich 14889 lgsdi 15278 bj-indind 15578 | 
| Copyright terms: Public domain | W3C validator |