| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 |
|
| sylanb.2 |
|
| Ref | Expression |
|---|---|
| sylanb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylanb.2 |
. 2
| |
| 4 | 2, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2148 eqtr2 2226 pm13.181 2460 rmob 3099 disjne 3522 seex 4400 tron 4447 fssres 5473 funbrfvb 5644 funopfvb 5645 fvelrnb 5649 fvco 5672 fvimacnvi 5717 ffvresb 5766 funresdfunsnss 5810 fvtp2g 5816 fvtp2 5819 fnex 5829 funex 5830 1st2nd 6290 dftpos4 6372 nnmsucr 6597 nnmcan 6628 xpmapenlem 6971 fundmfibi 7066 sup3exmid 9065 nzadd 9460 peano5uzti 9516 fnn0ind 9524 uztrn2 9701 irradd 9802 xltnegi 9992 xaddnemnf 10014 xaddnepnf 10015 xaddcom 10018 xnegdi 10025 elioore 10069 uzsubsubfz1 10205 fzo1fzo0n0 10344 elfzonelfzo 10396 qbtwnxr 10437 faclbnd 10923 faclbnd3 10925 swrdccat3b 11231 dvdsprime 12559 pcgcd 12767 znf1o 14528 restuni 14759 stoig 14760 cnnei 14819 tgioo 15141 divcnap 15152 ivthdich 15240 lgsdi 15629 bj-indind 16067 |
| Copyright terms: Public domain | W3C validator |