| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 |
|
| sylanb.2 |
|
| Ref | Expression |
|---|---|
| sylanb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylanb.2 |
. 2
| |
| 4 | 2, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2137 eqtr2 2215 pm13.181 2449 rmob 3082 disjne 3505 seex 4371 tron 4418 fssres 5436 funbrfvb 5606 funopfvb 5607 fvelrnb 5611 fvco 5634 fvimacnvi 5679 ffvresb 5728 funresdfunsnss 5768 fvtp2g 5774 fvtp2 5777 fnex 5787 funex 5788 1st2nd 6248 dftpos4 6330 nnmsucr 6555 nnmcan 6586 xpmapenlem 6919 fundmfibi 7013 sup3exmid 9001 nzadd 9395 peano5uzti 9451 fnn0ind 9459 uztrn2 9636 irradd 9737 xltnegi 9927 xaddnemnf 9949 xaddnepnf 9950 xaddcom 9953 xnegdi 9960 elioore 10004 uzsubsubfz1 10140 fzo1fzo0n0 10276 elfzonelfzo 10323 qbtwnxr 10364 faclbnd 10850 faclbnd3 10852 dvdsprime 12315 pcgcd 12523 znf1o 14283 restuni 14492 stoig 14493 cnnei 14552 tgioo 14874 divcnap 14885 ivthdich 14973 lgsdi 15362 bj-indind 15662 |
| Copyright terms: Public domain | W3C validator |