| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 |
|
| sylanb.2 |
|
| Ref | Expression |
|---|---|
| sylanb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylanb.2 |
. 2
| |
| 4 | 2, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2146 eqtr2 2224 pm13.181 2458 rmob 3091 disjne 3514 seex 4383 tron 4430 fssres 5453 funbrfvb 5623 funopfvb 5624 fvelrnb 5628 fvco 5651 fvimacnvi 5696 ffvresb 5745 funresdfunsnss 5789 fvtp2g 5795 fvtp2 5798 fnex 5808 funex 5809 1st2nd 6269 dftpos4 6351 nnmsucr 6576 nnmcan 6607 xpmapenlem 6948 fundmfibi 7042 sup3exmid 9032 nzadd 9427 peano5uzti 9483 fnn0ind 9491 uztrn2 9668 irradd 9769 xltnegi 9959 xaddnemnf 9981 xaddnepnf 9982 xaddcom 9985 xnegdi 9992 elioore 10036 uzsubsubfz1 10172 fzo1fzo0n0 10309 elfzonelfzo 10361 qbtwnxr 10402 faclbnd 10888 faclbnd3 10890 dvdsprime 12477 pcgcd 12685 znf1o 14446 restuni 14677 stoig 14678 cnnei 14737 tgioo 15059 divcnap 15070 ivthdich 15158 lgsdi 15547 bj-indind 15905 |
| Copyright terms: Public domain | W3C validator |