![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanb.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylanb.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylanb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 119 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylanb.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan 279 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anb 287 anabsan 545 2exeu 2052 eqtr2 2118 pm13.181 2349 rmob 2953 disjne 3363 seex 4195 tron 4242 fssres 5234 funbrfvb 5396 funopfvb 5397 fvelrnb 5401 fvco 5423 fvimacnvi 5466 ffvresb 5515 funresdfunsnss 5555 fvtp2g 5561 fvtp2 5564 fnex 5574 funex 5575 1st2nd 6009 dftpos4 6090 nnmsucr 6314 nnmcan 6345 xpmapenlem 6672 fundmfibi 6755 sup3exmid 8573 nzadd 8958 peano5uzti 9011 fnn0ind 9019 uztrn2 9193 irradd 9288 xltnegi 9459 xaddnemnf 9481 xaddnepnf 9482 xaddcom 9485 xnegdi 9492 elioore 9536 uzsubsubfz1 9669 fzo1fzo0n0 9801 elfzonelfzo 9848 qbtwnxr 9876 faclbnd 10328 faclbnd3 10330 dvdsprime 11596 restuni 12123 stoig 12124 cnnei 12182 tgioo 12465 bj-indind 12715 |
Copyright terms: Public domain | W3C validator |