| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 |
|
| sylanb.2 |
|
| Ref | Expression |
|---|---|
| sylanb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | sylanb.2 |
. 2
| |
| 4 | 2, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2146 eqtr2 2224 pm13.181 2458 rmob 3091 disjne 3514 seex 4382 tron 4429 fssres 5451 funbrfvb 5621 funopfvb 5622 fvelrnb 5626 fvco 5649 fvimacnvi 5694 ffvresb 5743 funresdfunsnss 5787 fvtp2g 5793 fvtp2 5796 fnex 5806 funex 5807 1st2nd 6267 dftpos4 6349 nnmsucr 6574 nnmcan 6605 xpmapenlem 6946 fundmfibi 7040 sup3exmid 9030 nzadd 9425 peano5uzti 9481 fnn0ind 9489 uztrn2 9666 irradd 9767 xltnegi 9957 xaddnemnf 9979 xaddnepnf 9980 xaddcom 9983 xnegdi 9990 elioore 10034 uzsubsubfz1 10170 fzo1fzo0n0 10307 elfzonelfzo 10359 qbtwnxr 10400 faclbnd 10886 faclbnd3 10888 dvdsprime 12444 pcgcd 12652 znf1o 14413 restuni 14644 stoig 14645 cnnei 14704 tgioo 15026 divcnap 15037 ivthdich 15125 lgsdi 15514 bj-indind 15868 |
| Copyright terms: Public domain | W3C validator |