![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanb.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylanb.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylanb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 120 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylanb.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan 283 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2134 eqtr2 2212 pm13.181 2446 rmob 3078 disjne 3500 seex 4366 tron 4413 fssres 5429 funbrfvb 5599 funopfvb 5600 fvelrnb 5604 fvco 5627 fvimacnvi 5672 ffvresb 5721 funresdfunsnss 5761 fvtp2g 5767 fvtp2 5770 fnex 5780 funex 5781 1st2nd 6234 dftpos4 6316 nnmsucr 6541 nnmcan 6572 xpmapenlem 6905 fundmfibi 6997 sup3exmid 8976 nzadd 9369 peano5uzti 9425 fnn0ind 9433 uztrn2 9610 irradd 9711 xltnegi 9901 xaddnemnf 9923 xaddnepnf 9924 xaddcom 9927 xnegdi 9934 elioore 9978 uzsubsubfz1 10114 fzo1fzo0n0 10250 elfzonelfzo 10297 qbtwnxr 10326 faclbnd 10812 faclbnd3 10814 dvdsprime 12260 pcgcd 12467 znf1o 14139 restuni 14340 stoig 14341 cnnei 14400 tgioo 14714 divcnap 14723 ivthdich 14807 lgsdi 15153 bj-indind 15424 |
Copyright terms: Public domain | W3C validator |