ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anbi1 Unicode version

Theorem anbi1 463
Description: Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
anbi1  |-  ( (
ph 
<->  ps )  ->  (
( ph  /\  ch )  <->  ( ps  /\  ch )
) )

Proof of Theorem anbi1
StepHypRef Expression
1 id 19 . 2  |-  ( (
ph 
<->  ps )  ->  ( ph 
<->  ps ) )
21anbi1d 462 1  |-  ( (
ph 
<->  ps )  ->  (
( ph  /\  ch )  <->  ( ps  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.75  957  expap0  10506  rexfiuz  10953
  Copyright terms: Public domain W3C validator