ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexfiuz Unicode version

Theorem rexfiuz 11154
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
Assertion
Ref Expression
rexfiuz  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Distinct variable groups:    j, k, n, A    ph, j
Allowed substitution hints:    ph( k, n)

Proof of Theorem rexfiuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2693 . . . 4  |-  ( x  =  (/)  ->  ( A. n  e.  x  ph  <->  A. n  e.  (/)  ph )
)
21rexralbidv 2523 . . 3  |-  ( x  =  (/)  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
)
3 raleq 2693 . . 3  |-  ( x  =  (/)  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42, 3bibi12d 235 . 2  |-  ( x  =  (/)  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
5 raleq 2693 . . . 4  |-  ( x  =  y  ->  ( A. n  e.  x  ph  <->  A. n  e.  y  ph ) )
65rexralbidv 2523 . . 3  |-  ( x  =  y  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph ) )
7 raleq 2693 . . 3  |-  ( x  =  y  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
86, 7bibi12d 235 . 2  |-  ( x  =  y  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
9 raleq 2693 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  ph  <->  A. n  e.  ( y  u.  {
z } ) ph ) )
109rexralbidv 2523 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph ) )
11 raleq 2693 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1210, 11bibi12d 235 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
13 raleq 2693 . . . 4  |-  ( x  =  A  ->  ( A. n  e.  x  ph  <->  A. n  e.  A  ph ) )
1413rexralbidv 2523 . . 3  |-  ( x  =  A  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph ) )
15 raleq 2693 . . 3  |-  ( x  =  A  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1614, 15bibi12d 235 . 2  |-  ( x  =  A  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
17 0z 9337 . . . . 5  |-  0  e.  ZZ
18 elex2 2779 . . . . 5  |-  ( 0  e.  ZZ  ->  E. j 
j  e.  ZZ )
1917, 18ax-mp 5 . . . 4  |-  E. j 
j  e.  ZZ
20 ral0 3552 . . . . 5  |-  A. n  e.  (/)  ph
2120rgen2w 2553 . . . 4  |-  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
22 r19.2m 3537 . . . 4  |-  ( ( E. j  j  e.  ZZ  /\  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
2319, 21, 22mp2an 426 . . 3  |-  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
24 ral0 3552 . . 3  |-  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph
2523, 242th 174 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
26 anbi1 466 . . . 4  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
27 rexanuz 11153 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
28 ralunb 3344 . . . . . . 7  |-  ( A. n  e.  ( y  u.  { z } )
ph 
<->  ( A. n  e.  y  ph  /\  A. n  e.  { z } ph ) )
2928ralbii 2503 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
3029rexbii 2504 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
31 ralsnsg 3659 . . . . . . . 8  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
32 sbcrex 3069 . . . . . . . . 9  |-  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>=
`  j ) ph )
33 ralcom 2660 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph )
34 ralsnsg 3659 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3533, 34bitrid 192 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( A. k  e.  ( ZZ>=
`  j ) A. n  e.  { z } ph  <->  [. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3635rexbidv 2498 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>= `  j ) ph )
)
3732, 36bitr4id 199 . . . . . . . 8  |-  ( z  e.  _V  ->  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3831, 37bitrd 188 . . . . . . 7  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3938elv 2767 . . . . . 6  |-  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph )
4039anbi2i 457 . . . . 5  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
4127, 30, 403bitr4i 212 . . . 4  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42 ralunb 3344 . . . 4  |-  ( A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e. 
{ z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4326, 41, 423bitr4g 223 . . 3  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4443a1i 9 . 2  |-  ( y  e.  Fin  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
454, 8, 12, 16, 25, 44findcard2 6950 1  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   [.wsbc 2989    u. cun 3155   (/)c0 3450   {csn 3622   ` cfv 5258   Fincfn 6799   0cc0 7879   ZZcz 9326   ZZ>=cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator