ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexfiuz Unicode version

Theorem rexfiuz 10917
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
Assertion
Ref Expression
rexfiuz  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Distinct variable groups:    j, k, n, A    ph, j
Allowed substitution hints:    ph( k, n)

Proof of Theorem rexfiuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2659 . . . 4  |-  ( x  =  (/)  ->  ( A. n  e.  x  ph  <->  A. n  e.  (/)  ph )
)
21rexralbidv 2490 . . 3  |-  ( x  =  (/)  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
)
3 raleq 2659 . . 3  |-  ( x  =  (/)  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42, 3bibi12d 234 . 2  |-  ( x  =  (/)  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
5 raleq 2659 . . . 4  |-  ( x  =  y  ->  ( A. n  e.  x  ph  <->  A. n  e.  y  ph ) )
65rexralbidv 2490 . . 3  |-  ( x  =  y  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph ) )
7 raleq 2659 . . 3  |-  ( x  =  y  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
86, 7bibi12d 234 . 2  |-  ( x  =  y  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
9 raleq 2659 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  ph  <->  A. n  e.  ( y  u.  {
z } ) ph ) )
109rexralbidv 2490 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph ) )
11 raleq 2659 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1210, 11bibi12d 234 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
13 raleq 2659 . . . 4  |-  ( x  =  A  ->  ( A. n  e.  x  ph  <->  A. n  e.  A  ph ) )
1413rexralbidv 2490 . . 3  |-  ( x  =  A  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph ) )
15 raleq 2659 . . 3  |-  ( x  =  A  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1614, 15bibi12d 234 . 2  |-  ( x  =  A  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
17 0z 9193 . . . . 5  |-  0  e.  ZZ
18 elex2 2737 . . . . 5  |-  ( 0  e.  ZZ  ->  E. j 
j  e.  ZZ )
1917, 18ax-mp 5 . . . 4  |-  E. j 
j  e.  ZZ
20 ral0 3505 . . . . 5  |-  A. n  e.  (/)  ph
2120rgen2w 2520 . . . 4  |-  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
22 r19.2m 3490 . . . 4  |-  ( ( E. j  j  e.  ZZ  /\  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
2319, 21, 22mp2an 423 . . 3  |-  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
24 ral0 3505 . . 3  |-  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph
2523, 242th 173 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
26 anbi1 462 . . . 4  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
27 rexanuz 10916 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
28 ralunb 3298 . . . . . . 7  |-  ( A. n  e.  ( y  u.  { z } )
ph 
<->  ( A. n  e.  y  ph  /\  A. n  e.  { z } ph ) )
2928ralbii 2470 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
3029rexbii 2471 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
31 ralsnsg 3607 . . . . . . . 8  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
32 sbcrex 3025 . . . . . . . . 9  |-  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>=
`  j ) ph )
33 ralcom 2627 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph )
34 ralsnsg 3607 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3533, 34syl5bb 191 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( A. k  e.  ( ZZ>=
`  j ) A. n  e.  { z } ph  <->  [. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3635rexbidv 2465 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>= `  j ) ph )
)
3732, 36bitr4id 198 . . . . . . . 8  |-  ( z  e.  _V  ->  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3831, 37bitrd 187 . . . . . . 7  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3938elv 2725 . . . . . 6  |-  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph )
4039anbi2i 453 . . . . 5  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
4127, 30, 403bitr4i 211 . . . 4  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42 ralunb 3298 . . . 4  |-  ( A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e. 
{ z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4326, 41, 423bitr4g 222 . . 3  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4443a1i 9 . 2  |-  ( y  e.  Fin  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
454, 8, 12, 16, 25, 44findcard2 6846 1  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342   E.wex 1479    e. wcel 2135   A.wral 2442   E.wrex 2443   _Vcvv 2721   [.wsbc 2946    u. cun 3109   (/)c0 3404   {csn 3570   ` cfv 5182   Fincfn 6697   0cc0 7744   ZZcz 9182   ZZ>=cuz 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-er 6492  df-en 6698  df-fin 6700  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator