ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexfiuz Unicode version

Theorem rexfiuz 11415
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
Assertion
Ref Expression
rexfiuz  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Distinct variable groups:    j, k, n, A    ph, j
Allowed substitution hints:    ph( k, n)

Proof of Theorem rexfiuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2705 . . . 4  |-  ( x  =  (/)  ->  ( A. n  e.  x  ph  <->  A. n  e.  (/)  ph )
)
21rexralbidv 2534 . . 3  |-  ( x  =  (/)  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
)
3 raleq 2705 . . 3  |-  ( x  =  (/)  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42, 3bibi12d 235 . 2  |-  ( x  =  (/)  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
5 raleq 2705 . . . 4  |-  ( x  =  y  ->  ( A. n  e.  x  ph  <->  A. n  e.  y  ph ) )
65rexralbidv 2534 . . 3  |-  ( x  =  y  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph ) )
7 raleq 2705 . . 3  |-  ( x  =  y  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
86, 7bibi12d 235 . 2  |-  ( x  =  y  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
9 raleq 2705 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  ph  <->  A. n  e.  ( y  u.  {
z } ) ph ) )
109rexralbidv 2534 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph ) )
11 raleq 2705 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1210, 11bibi12d 235 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
13 raleq 2705 . . . 4  |-  ( x  =  A  ->  ( A. n  e.  x  ph  <->  A. n  e.  A  ph ) )
1413rexralbidv 2534 . . 3  |-  ( x  =  A  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph ) )
15 raleq 2705 . . 3  |-  ( x  =  A  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1614, 15bibi12d 235 . 2  |-  ( x  =  A  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
17 0z 9418 . . . . 5  |-  0  e.  ZZ
18 elex2 2793 . . . . 5  |-  ( 0  e.  ZZ  ->  E. j 
j  e.  ZZ )
1917, 18ax-mp 5 . . . 4  |-  E. j 
j  e.  ZZ
20 ral0 3570 . . . . 5  |-  A. n  e.  (/)  ph
2120rgen2w 2564 . . . 4  |-  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
22 r19.2m 3555 . . . 4  |-  ( ( E. j  j  e.  ZZ  /\  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
2319, 21, 22mp2an 426 . . 3  |-  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
24 ral0 3570 . . 3  |-  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph
2523, 242th 174 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
26 anbi1 466 . . . 4  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
27 rexanuz 11414 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
28 ralunb 3362 . . . . . . 7  |-  ( A. n  e.  ( y  u.  { z } )
ph 
<->  ( A. n  e.  y  ph  /\  A. n  e.  { z } ph ) )
2928ralbii 2514 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
3029rexbii 2515 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
31 ralsnsg 3680 . . . . . . . 8  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
32 sbcrex 3085 . . . . . . . . 9  |-  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>=
`  j ) ph )
33 ralcom 2671 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph )
34 ralsnsg 3680 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3533, 34bitrid 192 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( A. k  e.  ( ZZ>=
`  j ) A. n  e.  { z } ph  <->  [. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3635rexbidv 2509 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>= `  j ) ph )
)
3732, 36bitr4id 199 . . . . . . . 8  |-  ( z  e.  _V  ->  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3831, 37bitrd 188 . . . . . . 7  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3938elv 2780 . . . . . 6  |-  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph )
4039anbi2i 457 . . . . 5  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
4127, 30, 403bitr4i 212 . . . 4  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42 ralunb 3362 . . . 4  |-  ( A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e. 
{ z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4326, 41, 423bitr4g 223 . . 3  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4443a1i 9 . 2  |-  ( y  e.  Fin  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
454, 8, 12, 16, 25, 44findcard2 7012 1  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776   [.wsbc 3005    u. cun 3172   (/)c0 3468   {csn 3643   ` cfv 5290   Fincfn 6850   0cc0 7960   ZZcz 9407   ZZ>=cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-er 6643  df-en 6851  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator