| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axaddass | Unicode version | ||
| Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 8027 be used later. Instead, use addass 8055. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axaddass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs 7954 |
. 2
| |
| 2 | addcnsrec 7955 |
. 2
| |
| 3 | addcnsrec 7955 |
. 2
| |
| 4 | addcnsrec 7955 |
. 2
| |
| 5 | addcnsrec 7955 |
. 2
| |
| 6 | addclsr 7866 |
. . . 4
| |
| 7 | addclsr 7866 |
. . . 4
| |
| 8 | 6, 7 | anim12i 338 |
. . 3
|
| 9 | 8 | an4s 588 |
. 2
|
| 10 | addclsr 7866 |
. . . 4
| |
| 11 | addclsr 7866 |
. . . 4
| |
| 12 | 10, 11 | anim12i 338 |
. . 3
|
| 13 | 12 | an4s 588 |
. 2
|
| 14 | addasssrg 7869 |
. . . . 5
| |
| 15 | 14 | 3adant3r 1238 |
. . . 4
|
| 16 | 15 | 3adant2r 1236 |
. . 3
|
| 17 | 16 | 3adant1r 1234 |
. 2
|
| 18 | addasssrg 7869 |
. . . . 5
| |
| 19 | 18 | 3adant3l 1237 |
. . . 4
|
| 20 | 19 | 3adant2l 1235 |
. . 3
|
| 21 | 20 | 3adant1l 1233 |
. 2
|
| 22 | 1, 2, 3, 4, 5, 9, 13, 17, 21 | ecoviass 6732 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-iplp 7581 df-enr 7839 df-nr 7840 df-plr 7841 df-c 7931 df-add 7936 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |