| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axaddass | Unicode version | ||
| Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 8101 be used later. Instead, use addass 8129. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axaddass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs 8028 |
. 2
| |
| 2 | addcnsrec 8029 |
. 2
| |
| 3 | addcnsrec 8029 |
. 2
| |
| 4 | addcnsrec 8029 |
. 2
| |
| 5 | addcnsrec 8029 |
. 2
| |
| 6 | addclsr 7940 |
. . . 4
| |
| 7 | addclsr 7940 |
. . . 4
| |
| 8 | 6, 7 | anim12i 338 |
. . 3
|
| 9 | 8 | an4s 590 |
. 2
|
| 10 | addclsr 7940 |
. . . 4
| |
| 11 | addclsr 7940 |
. . . 4
| |
| 12 | 10, 11 | anim12i 338 |
. . 3
|
| 13 | 12 | an4s 590 |
. 2
|
| 14 | addasssrg 7943 |
. . . . 5
| |
| 15 | 14 | 3adant3r 1259 |
. . . 4
|
| 16 | 15 | 3adant2r 1257 |
. . 3
|
| 17 | 16 | 3adant1r 1255 |
. 2
|
| 18 | addasssrg 7943 |
. . . . 5
| |
| 19 | 18 | 3adant3l 1258 |
. . . 4
|
| 20 | 19 | 3adant2l 1256 |
. . 3
|
| 21 | 20 | 3adant1l 1254 |
. 2
|
| 22 | 1, 2, 3, 4, 5, 9, 13, 17, 21 | ecoviass 6792 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-enr 7913 df-nr 7914 df-plr 7915 df-c 8005 df-add 8010 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |