![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-icn | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
ax-icn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 7502 |
. 2
![]() ![]() | |
2 | cc 7498 |
. 2
![]() ![]() | |
3 | 1, 2 | wcel 1448 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 7630 mulid1 7635 cnegexlem2 7809 cnegex 7811 0cnALT 7823 negicn 7834 ine0 8023 ixi 8211 rimul 8213 rereim 8214 apreap 8215 cru 8230 apreim 8231 mulreim 8232 apadd1 8236 apneg 8239 recextlem1 8273 recexaplem2 8274 recexap 8275 crap0 8574 cju 8577 it0e0 8793 2mulicn 8794 iap0 8795 2muliap0 8796 cnref1o 9290 irec 10233 i2 10234 i3 10235 i4 10236 iexpcyc 10238 imval 10463 imre 10464 reim 10465 crre 10470 crim 10471 remim 10473 mulreap 10477 cjreb 10479 recj 10480 reneg 10481 readd 10482 remullem 10484 imcj 10488 imneg 10489 imadd 10490 cjadd 10497 cjneg 10503 imval2 10507 rei 10512 imi 10513 cji 10515 cjreim 10516 cjreim2 10517 cjap 10519 cnrecnv 10523 rennim 10614 absi 10671 absreimsq 10679 absreim 10680 absimle 10696 climcvg1nlem 10957 sinval 11207 cosval 11208 sinf 11209 cosf 11210 tanval2ap 11218 tanval3ap 11219 resinval 11220 recosval 11221 efi4p 11222 resin4p 11223 recos4p 11224 resincl 11225 recoscl 11226 sinneg 11231 cosneg 11232 efival 11237 efmival 11238 efeul 11239 sinadd 11241 cosadd 11242 ef01bndlem 11261 sin01bnd 11262 cos01bnd 11263 absef 11273 absefib 11274 efieq1re 11275 demoivre 11276 demoivreALT 11277 qdencn 12806 |
Copyright terms: Public domain | W3C validator |