![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-icn | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
ax-icn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 7876 |
. 2
![]() ![]() | |
2 | cc 7872 |
. 2
![]() ![]() | |
3 | 1, 2 | wcel 2164 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 8013 mulrid 8018 cnegexlem2 8197 cnegex 8199 0cnALT 8211 negicn 8222 ine0 8415 ixi 8604 rimul 8606 rereim 8607 apreap 8608 cru 8623 apreim 8624 mulreim 8625 apadd1 8629 apneg 8632 aprcl 8667 aptap 8671 recextlem1 8672 recexaplem2 8673 recexap 8674 crap0 8979 cju 8982 it0e0 9206 2mulicn 9207 iap0 9208 2muliap0 9209 cnref1o 9719 irec 10713 i2 10714 i3 10715 i4 10716 iexpcyc 10718 imval 10997 imre 10998 reim 10999 crre 11004 crim 11005 remim 11007 mulreap 11011 cjreb 11013 recj 11014 reneg 11015 readd 11016 remullem 11018 imcj 11022 imneg 11023 imadd 11024 cjadd 11031 cjneg 11037 imval2 11041 rei 11046 imi 11047 cji 11049 cjreim 11050 cjreim2 11051 cjap 11053 cnrecnv 11057 rennim 11149 absi 11206 absreimsq 11214 absreim 11215 absimle 11231 climcvg1nlem 11495 sinval 11848 cosval 11849 sinf 11850 cosf 11851 tanval2ap 11859 tanval3ap 11860 resinval 11861 recosval 11862 efi4p 11863 resin4p 11864 recos4p 11865 resincl 11866 recoscl 11867 sinneg 11872 cosneg 11873 efival 11878 efmival 11879 efeul 11880 sinadd 11882 cosadd 11883 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 absef 11916 absefib 11917 efieq1re 11918 demoivre 11919 demoivreALT 11920 igz 12515 4sqlem17 12548 cnrehmeocntop 14789 sincn 14945 coscn 14946 efhalfpi 14975 ef2kpi 14982 efper 14983 sinperlem 14984 efimpi 14995 2sqlem2 15272 qdencn 15587 |
Copyright terms: Public domain | W3C validator |