![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcl | Unicode version |
Description: Alias for ax-addcl 7968, for naming consistency with addcli 8023. Use this theorem instead of ax-addcl 7968 or axaddcl 7924. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 7968 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-addcl 7968 |
This theorem is referenced by: adddir 8010 0cn 8011 addcli 8023 addcld 8039 muladd11 8152 peano2cn 8154 muladd11r 8175 add4 8180 cnegexlem3 8196 cnegex 8197 0cnALT 8209 negeu 8210 pncan 8225 2addsub 8233 addsubeq4 8234 nppcan2 8250 ppncan 8261 muladd 8403 mulsub 8420 recexap 8672 muleqadd 8687 conjmulap 8748 ofnegsub 8981 halfaddsubcl 9215 halfaddsub 9216 serf 10554 ser3add 10593 ser3sub 10594 ser0 10604 binom2 10722 binom3 10728 bernneq 10731 shftlem 10960 shftval2 10970 shftval5 10973 2shfti 10975 crre 11001 crim 11002 cjadd 11028 addcj 11035 sqabsadd 11199 absreimsq 11211 absreim 11212 abstri 11248 addcn2 11453 climadd 11469 clim2ser 11480 clim2ser2 11481 isermulc2 11483 serf0 11495 sumrbdclem 11520 fsum3cvg 11521 summodclem3 11523 summodclem2a 11524 zsumdc 11527 fsum3 11530 fsum3cvg2 11537 fsum3ser 11540 fsumcl2lem 11541 fsumcl 11543 sumsnf 11552 fsummulc2 11591 binom 11627 isumshft 11633 isumsplit 11634 geolim2 11655 cvgratnnlemseq 11669 cvgratz 11675 ef0lem 11803 efcj 11816 ef4p 11837 efgt1p 11839 tanval3ap 11857 efi4p 11860 sinadd 11879 cosadd 11880 tanaddap 11882 addsin 11885 demoivreALT 11917 opoe 12036 pythagtriplem4 12406 pythagtriplem12 12413 gzaddcl 12515 cncrng 14057 addccncf 14754 dvaddxxbr 14850 dvaddxx 14852 dviaddf 14854 dveflem 14872 plyaddcl 14900 plymulcl 14901 plysubcl 14902 sinperlem 14943 ptolemy 14959 tangtx 14973 sinkpi 14982 binom4 15111 2sqlem2 15202 |
Copyright terms: Public domain | W3C validator |