![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcl | Unicode version |
Description: Alias for ax-addcl 7970, for naming consistency with addcli 8025. Use this theorem instead of ax-addcl 7970 or axaddcl 7926. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 7970 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-addcl 7970 |
This theorem is referenced by: adddir 8012 0cn 8013 addcli 8025 addcld 8041 muladd11 8154 peano2cn 8156 muladd11r 8177 add4 8182 cnegexlem3 8198 cnegex 8199 0cnALT 8211 negeu 8212 pncan 8227 2addsub 8235 addsubeq4 8236 nppcan2 8252 ppncan 8263 muladd 8405 mulsub 8422 recexap 8674 muleqadd 8689 conjmulap 8750 ofnegsub 8983 halfaddsubcl 9218 halfaddsub 9219 serf 10557 ser3add 10596 ser3sub 10597 ser0 10607 binom2 10725 binom3 10731 bernneq 10734 shftlem 10963 shftval2 10973 shftval5 10976 2shfti 10978 crre 11004 crim 11005 cjadd 11031 addcj 11038 sqabsadd 11202 absreimsq 11214 absreim 11215 abstri 11251 addcn2 11456 climadd 11472 clim2ser 11483 clim2ser2 11484 isermulc2 11486 serf0 11498 sumrbdclem 11523 fsum3cvg 11524 summodclem3 11526 summodclem2a 11527 zsumdc 11530 fsum3 11533 fsum3cvg2 11540 fsum3ser 11543 fsumcl2lem 11544 fsumcl 11546 sumsnf 11555 fsummulc2 11594 binom 11630 isumshft 11636 isumsplit 11637 geolim2 11658 cvgratnnlemseq 11672 cvgratz 11678 ef0lem 11806 efcj 11819 ef4p 11840 efgt1p 11842 tanval3ap 11860 efi4p 11863 sinadd 11882 cosadd 11883 tanaddap 11885 addsin 11888 demoivreALT 11920 opoe 12039 pythagtriplem4 12409 pythagtriplem12 12416 gzaddcl 12518 cncrng 14068 addccncf 14779 dvaddxxbr 14880 dvaddxx 14882 dviaddf 14884 dveflem 14905 plyaddcl 14933 plymulcl 14934 plysubcl 14935 sinperlem 14984 ptolemy 15000 tangtx 15014 sinkpi 15023 binom4 15152 lgsquad2lem1 15238 2sqlem2 15272 |
Copyright terms: Public domain | W3C validator |