ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axaddcl Unicode version

Theorem axaddcl 7684
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7728 be used later. Instead, in most cases use addcl 7757. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axaddcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )

Proof of Theorem axaddcl
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4555 . . . . 5  |-  ( A  e.  ( R.  X.  R. )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
2 df-c 7638 . . . . 5  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2234 . . . 4  |-  ( A  e.  CC  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
4 elxpi 4555 . . . . 5  |-  ( B  e.  ( R.  X.  R. )  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
54, 2eleq2s 2234 . . . 4  |-  ( B  e.  CC  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
63, 5anim12i 336 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
)  /\  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) ) )
7 ee4anv 1906 . . 3  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  <->  ( E. x E. y ( A  =  <. x ,  y
>.  /\  ( x  e. 
R.  /\  y  e.  R. ) )  /\  E. z E. w ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
86, 7sylibr 133 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
9 simpll 518 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  A  =  <. x ,  y >. )
10 simprl 520 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  B  =  <. z ,  w >. )
119, 10oveq12d 5792 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  =  ( <.
x ,  y >.  +  <. z ,  w >. ) )
12 addcnsr 7654 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( <. x ,  y >.  +  <. z ,  w >. )  =  <. ( x  +R  z ) ,  ( y  +R  w )
>. )
1312ad2ant2l 499 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( <. x ,  y
>.  +  <. z ,  w >. )  =  <. (
x  +R  z ) ,  ( y  +R  w ) >. )
1411, 13eqtrd 2172 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  =  <. (
x  +R  z ) ,  ( y  +R  w ) >. )
15 addclsr 7573 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  +R  z
)  e.  R. )
1615ad2ant2r 500 . . . . . . . 8  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( x  +R  z )  e.  R. )
17 addclsr 7573 . . . . . . . . 9  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  +R  w
)  e.  R. )
1817ad2ant2l 499 . . . . . . . 8  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( y  +R  w )  e.  R. )
19 opelxpi 4571 . . . . . . . 8  |-  ( ( ( x  +R  z
)  e.  R.  /\  ( y  +R  w
)  e.  R. )  -> 
<. ( x  +R  z
) ,  ( y  +R  w ) >.  e.  ( R.  X.  R. ) )
2016, 18, 19syl2anc 408 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  <. ( x  +R  z ) ,  ( y  +R  w
) >.  e.  ( R. 
X.  R. ) )
2120, 2eleqtrrdi 2233 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  <. ( x  +R  z ) ,  ( y  +R  w
) >.  e.  CC )
2221ad2ant2l 499 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  <. ( x  +R  z
) ,  ( y  +R  w ) >.  e.  CC )
2314, 22eqeltrd 2216 . . . 4  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
2423exlimivv 1868 . . 3  |-  ( E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
2524exlimivv 1868 . 2  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
268, 25syl 14 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   <.cop 3530    X. cxp 4537  (class class class)co 5774   R.cnr 7117    +R cplr 7121   CCcc 7630    + caddc 7635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7124  df-pli 7125  df-mi 7126  df-lti 7127  df-plpq 7164  df-mpq 7165  df-enq 7167  df-nqqs 7168  df-plqqs 7169  df-mqqs 7170  df-1nqqs 7171  df-rq 7172  df-ltnqqs 7173  df-enq0 7244  df-nq0 7245  df-0nq0 7246  df-plq0 7247  df-mq0 7248  df-inp 7286  df-iplp 7288  df-enr 7546  df-nr 7547  df-plr 7548  df-c 7638  df-add 7643
This theorem is referenced by:  axaddf  7688
  Copyright terms: Public domain W3C validator