ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axaddcl Unicode version

Theorem axaddcl 7805
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7849 be used later. Instead, in most cases use addcl 7878. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axaddcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )

Proof of Theorem axaddcl
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4620 . . . . 5  |-  ( A  e.  ( R.  X.  R. )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
2 df-c 7759 . . . . 5  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2261 . . . 4  |-  ( A  e.  CC  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
4 elxpi 4620 . . . . 5  |-  ( B  e.  ( R.  X.  R. )  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
54, 2eleq2s 2261 . . . 4  |-  ( B  e.  CC  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
63, 5anim12i 336 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
)  /\  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) ) )
7 ee4anv 1922 . . 3  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  <->  ( E. x E. y ( A  =  <. x ,  y
>.  /\  ( x  e. 
R.  /\  y  e.  R. ) )  /\  E. z E. w ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
86, 7sylibr 133 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
9 simpll 519 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  A  =  <. x ,  y >. )
10 simprl 521 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  B  =  <. z ,  w >. )
119, 10oveq12d 5860 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  =  ( <.
x ,  y >.  +  <. z ,  w >. ) )
12 addcnsr 7775 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( <. x ,  y >.  +  <. z ,  w >. )  =  <. ( x  +R  z ) ,  ( y  +R  w )
>. )
1312ad2ant2l 500 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( <. x ,  y
>.  +  <. z ,  w >. )  =  <. (
x  +R  z ) ,  ( y  +R  w ) >. )
1411, 13eqtrd 2198 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  =  <. (
x  +R  z ) ,  ( y  +R  w ) >. )
15 addclsr 7694 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  +R  z
)  e.  R. )
1615ad2ant2r 501 . . . . . . . 8  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( x  +R  z )  e.  R. )
17 addclsr 7694 . . . . . . . . 9  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  +R  w
)  e.  R. )
1817ad2ant2l 500 . . . . . . . 8  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( y  +R  w )  e.  R. )
19 opelxpi 4636 . . . . . . . 8  |-  ( ( ( x  +R  z
)  e.  R.  /\  ( y  +R  w
)  e.  R. )  -> 
<. ( x  +R  z
) ,  ( y  +R  w ) >.  e.  ( R.  X.  R. ) )
2016, 18, 19syl2anc 409 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  <. ( x  +R  z ) ,  ( y  +R  w
) >.  e.  ( R. 
X.  R. ) )
2120, 2eleqtrrdi 2260 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  <. ( x  +R  z ) ,  ( y  +R  w
) >.  e.  CC )
2221ad2ant2l 500 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  <. ( x  +R  z
) ,  ( y  +R  w ) >.  e.  CC )
2314, 22eqeltrd 2243 . . . 4  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
2423exlimivv 1884 . . 3  |-  ( E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
2524exlimivv 1884 . 2  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
268, 25syl 14 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579    X. cxp 4602  (class class class)co 5842   R.cnr 7238    +R cplr 7242   CCcc 7751    + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-enr 7667  df-nr 7668  df-plr 7669  df-c 7759  df-add 7764
This theorem is referenced by:  axaddf  7809
  Copyright terms: Public domain W3C validator