ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axaddcl Unicode version

Theorem axaddcl 7865
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7909 be used later. Instead, in most cases use addcl 7938. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axaddcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )

Proof of Theorem axaddcl
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4644 . . . . 5  |-  ( A  e.  ( R.  X.  R. )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
2 df-c 7819 . . . . 5  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2272 . . . 4  |-  ( A  e.  CC  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
4 elxpi 4644 . . . . 5  |-  ( B  e.  ( R.  X.  R. )  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
54, 2eleq2s 2272 . . . 4  |-  ( B  e.  CC  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
63, 5anim12i 338 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
)  /\  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) ) )
7 ee4anv 1934 . . 3  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  <->  ( E. x E. y ( A  =  <. x ,  y
>.  /\  ( x  e. 
R.  /\  y  e.  R. ) )  /\  E. z E. w ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
86, 7sylibr 134 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
9 simpll 527 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  A  =  <. x ,  y >. )
10 simprl 529 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  B  =  <. z ,  w >. )
119, 10oveq12d 5895 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  =  ( <.
x ,  y >.  +  <. z ,  w >. ) )
12 addcnsr 7835 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( <. x ,  y >.  +  <. z ,  w >. )  =  <. ( x  +R  z ) ,  ( y  +R  w )
>. )
1312ad2ant2l 508 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( <. x ,  y
>.  +  <. z ,  w >. )  =  <. (
x  +R  z ) ,  ( y  +R  w ) >. )
1411, 13eqtrd 2210 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  =  <. (
x  +R  z ) ,  ( y  +R  w ) >. )
15 addclsr 7754 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  +R  z
)  e.  R. )
1615ad2ant2r 509 . . . . . . . 8  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( x  +R  z )  e.  R. )
17 addclsr 7754 . . . . . . . . 9  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  +R  w
)  e.  R. )
1817ad2ant2l 508 . . . . . . . 8  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( y  +R  w )  e.  R. )
19 opelxpi 4660 . . . . . . . 8  |-  ( ( ( x  +R  z
)  e.  R.  /\  ( y  +R  w
)  e.  R. )  -> 
<. ( x  +R  z
) ,  ( y  +R  w ) >.  e.  ( R.  X.  R. ) )
2016, 18, 19syl2anc 411 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  <. ( x  +R  z ) ,  ( y  +R  w
) >.  e.  ( R. 
X.  R. ) )
2120, 2eleqtrrdi 2271 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  <. ( x  +R  z ) ,  ( y  +R  w
) >.  e.  CC )
2221ad2ant2l 508 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  <. ( x  +R  z
) ,  ( y  +R  w ) >.  e.  CC )
2314, 22eqeltrd 2254 . . . 4  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
2423exlimivv 1896 . . 3  |-  ( E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
2524exlimivv 1896 . 2  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  +  B
)  e.  CC )
268, 25syl 14 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   <.cop 3597    X. cxp 4626  (class class class)co 5877   R.cnr 7298    +R cplr 7302   CCcc 7811    + caddc 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-enr 7727  df-nr 7728  df-plr 7729  df-c 7819  df-add 7824
This theorem is referenced by:  axaddf  7869
  Copyright terms: Public domain W3C validator