ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-i12 Unicode version

Axiom ax-i12 1485
Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever  z is distinct from  x and  y, and  x  =  y is true, then  x  =  y quantified with  z is also true. In other words,  z is irrelevant to the truth of 
x  =  y. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom has been modified from the original ax-12 1489 for compatibility with intuitionistic logic. (Contributed by Mario Carneiro, 31-Jan-2015.)

Assertion
Ref Expression
ax-i12  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )

Detailed syntax breakdown of Axiom ax-i12
StepHypRef Expression
1 vz . . . 4  setvar  z
2 vx . . . 4  setvar  x
31, 2weq 1479 . . 3  wff  z  =  x
43, 1wal 1329 . 2  wff  A. z 
z  =  x
5 vy . . . . 5  setvar  y
61, 5weq 1479 . . . 4  wff  z  =  y
76, 1wal 1329 . . 3  wff  A. z 
z  =  y
82, 5weq 1479 . . . . 5  wff  x  =  y
98, 1wal 1329 . . . . 5  wff  A. z  x  =  y
108, 9wi 4 . . . 4  wff  ( x  =  y  ->  A. z  x  =  y )
1110, 1wal 1329 . . 3  wff  A. z
( x  =  y  ->  A. z  x  =  y )
127, 11wo 697 . 2  wff  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
)
134, 12wo 697 1  wff  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
Colors of variables: wff set class
This axiom is referenced by:  ax-12  1489  ax12or  1490  dveeq2  1787  dveeq2or  1788  dvelimALT  1985  dvelimfv  1986
  Copyright terms: Public domain W3C validator