ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax12 Unicode version

Theorem ax12 1489
Description: Rederive the original version of the axiom from ax-i12 1484. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ax12  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )

Proof of Theorem ax12
StepHypRef Expression
1 ax12or 1485 . . . 4  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
21ori 713 . . 3  |-  ( -. 
A. z  z  =  x  ->  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
32ord 714 . 2  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  A. z ( x  =  y  ->  A. z  x  =  y )
) )
4 ax-4 1487 . 2  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( x  =  y  ->  A. z  x  =  y ) )
53, 4syl6 33 1  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698   A.wal 1330    = wceq 1332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-i12 1484  ax-4 1487
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator