HomeHome Intuitionistic Logic Explorer
Theorem List (p. 16 of 122)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1501-1600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem19.28 1501 Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |- 
 F/ x ph   =>    |-  ( A. x (
 ph  /\  ps )  <->  (
 ph  /\  A. x ps ) )
 
Theoremnfan1 1502 A closed form of nfan 1503. (Contributed by Mario Carneiro, 3-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  F/ x (
 ph  /\  ps )
 
Theoremnfan 1503 If  x is not free in  ph and  ps, it is not free in  ( ph  /\  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.)
 |- 
 F/ x ph   &    |-  F/ x ps   =>    |-  F/ x ( ph  /\  ps )
 
Theoremnf3an 1504 If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  /\  ps  /\  ch ). (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   &    |-  F/ x ch   =>    |- 
 F/ x ( ph  /\ 
 ps  /\  ch )
 
Theoremnford 1505 If in a context  x is not free in  ps and  ch, it is not free in  ( ps  \/  ch ). (Contributed by Jim Kingdon, 29-Oct-2019.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  F/ x ( ps  \/  ch ) )
 
Theoremnfand 1506 If in a context  x is not free in  ps and  ch, it is not free in  ( ps  /\  ch ). (Contributed by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  F/ x ( ps  /\  ch ) )
 
Theoremnf3and 1507 Deduction form of bound-variable hypothesis builder nf3an 1504. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  F/ x th )   =>    |-  ( ph  ->  F/ x ( ps  /\  ch  /\  th ) )
 
Theoremhbim1 1508 A closed form of hbim 1483. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ( ph  ->  ps )  ->  A. x (
 ph  ->  ps ) )
 
Theoremnfim1 1509 A closed form of nfim 1510. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  F/ x (
 ph  ->  ps )
 
Theoremnfim 1510 If  x is not free in  ph and  ps, it is not free in  ( ph  ->  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
 |- 
 F/ x ph   &    |-  F/ x ps   =>    |-  F/ x ( ph  ->  ps )
 
Theoremhbimd 1511 Deduction form of bound-variable hypothesis builder hbim 1483. (Contributed by NM, 1-Jan-2002.) (Revised by NM, 2-Feb-2015.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   &    |-  ( ph  ->  ( ch  ->  A. x ch ) )   =>    |-  ( ph  ->  (
 ( ps  ->  ch )  ->  A. x ( ps 
 ->  ch ) ) )
 
Theoremnfor 1512 If  x is not free in  ph and  ps, it is not free in  ( ph  \/  ps ). (Contributed by Jim Kingdon, 11-Mar-2018.)
 |- 
 F/ x ph   &    |-  F/ x ps   =>    |-  F/ x ( ph  \/  ps )
 
Theoremhbbid 1513 Deduction form of bound-variable hypothesis builder hbbi 1486. (Contributed by NM, 1-Jan-2002.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   &    |-  ( ph  ->  ( ch  ->  A. x ch ) )   =>    |-  ( ph  ->  (
 ( ps  <->  ch )  ->  A. x ( ps  <->  ch ) ) )
 
Theoremnfal 1514 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x A. y ph
 
Theoremnfnf 1515 If  x is not free in  ph, it is not free in  F/ y ph. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
 |- 
 F/ x ph   =>    |- 
 F/ x F/ y ph
 
Theoremnfalt 1516 Closed form of nfal 1514. (Contributed by Jim Kingdon, 11-May-2018.)
 |-  ( A. y F/ x ph  ->  F/ x A. y ph )
 
Theoremnfa2 1517 Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x A. y A. x ph
 
Theoremnfia1 1518 Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ( A. x ph  ->  A. x ps )
 
Theorem19.21ht 1519 Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) (New usage is discouraged.)
 |-  ( A. x (
 ph  ->  A. x ph )  ->  ( A. x (
 ph  ->  ps )  <->  ( ph  ->  A. x ps ) ) )
 
Theorem19.21t 1520 Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.)
 |-  ( F/ x ph  ->  ( A. x (
 ph  ->  ps )  <->  ( ph  ->  A. x ps ) ) )
 
Theorem19.21 1521 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " x is not free in  ph." (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   =>    |-  ( A. x (
 ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
 
Theoremstdpc5 1522 An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis  F/ x ph can be thought of as emulating " x is not free in  ph." With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example  x would not (for us) be free in  x  =  x by nfequid 1636. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
 |- 
 F/ x ph   =>    |-  ( A. x (
 ph  ->  ps )  ->  ( ph  ->  A. x ps )
 )
 
Theoremnfimd 1523 If in a context  x is not free in  ps and  ch, then it is not free in  ( ps  ->  ch ). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  F/ x ( ps  ->  ch ) )
 
Theoremaaanh 1524 Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( A. x A. y ( ph  /\  ps ) 
 <->  ( A. x ph  /\ 
 A. y ps )
 )
 
Theoremaaan 1525 Rearrange universal quantifiers. (Contributed by NM, 12-Aug-1993.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( A. x A. y (
 ph  /\  ps )  <->  (
 A. x ph  /\  A. y ps ) )
 
Theoremnfbid 1526 If in a context  x is not free in  ps and  ch, then it is not free in  ( ps  <->  ch ). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  F/ x ( ps  <->  ch ) )
 
Theoremnfbi 1527 If  x is not free in  ph and  ps, then it is not free in  ( ph  <->  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
 |- 
 F/ x ph   &    |-  F/ x ps   =>    |-  F/ x ( ph  <->  ps )
 
1.3.7  The existential quantifier
 
Theorem19.8a 1528 If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  E. x ph )
 
Theorem19.23bi 1529 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x ph  ->  ps )   =>    |-  ( ph  ->  ps )
 
Theoremexlimih 1530 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ps  ->  A. x ps )   &    |-  ( ph  ->  ps )   =>    |-  ( E. x ph  ->  ps )
 
Theoremexlimi 1531 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ps   &    |-  ( ph  ->  ps )   =>    |-  ( E. x ph  ->  ps )
 
Theoremexlimd2 1532 Deduction from Theorem 19.23 of [Margaris] p. 90. Similar to exlimdh 1533 but with one slightly different hypothesis. (Contributed by Jim Kingdon, 30-Dec-2017.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ch  ->  A. x ch ) )   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( E. x ps  ->  ch )
 )
 
Theoremexlimdh 1533 Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jan-1997.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ch  ->  A. x ch )   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  ->  ch )
 )
 
Theoremexlimd 1534 Deduction from Theorem 19.9 of [Margaris] p. 89. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 18-Jun-2018.)
 |- 
 F/ x ph   &    |-  F/ x ch   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  ->  ch )
 )
 
Theoremexlimiv 1535* Inference from Theorem 19.23 of [Margaris] p. 90.

This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf.

In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.

In essence, Rule C states that if we can prove that some element  x exists satisfying a wff, i.e.  E. x ph ( x ) where  ph ( x ) has  x free, then we can use  ph ( C  ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier.

We cannot do this in Metamath directly. Instead, we use the original  ph (containing  x) as an antecedent for the main part of the proof. We eventually arrive at  ( ph  ->  ps ) where  ps is the theorem to be proved and does not contain  x. Then we apply exlimiv 1535 to arrive at  ( E. x ph  ->  ps ). Finally, we separately prove  E. x ph and detach it with modus ponens ax-mp 7 to arrive at the final theorem  ps. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.)

 |-  ( ph  ->  ps )   =>    |-  ( E. x ph  ->  ps )
 
Theoremexim 1536 Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )
 
Theoremeximi 1537 Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  ( E. x ph  ->  E. x ps )
 
Theorem2eximi 1538 Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
 |-  ( ph  ->  ps )   =>    |-  ( E. x E. y ph  ->  E. x E. y ps )
 
Theoremeximii 1539 Inference associated with eximi 1537. (Contributed by BJ, 3-Feb-2018.)
 |- 
 E. x ph   &    |-  ( ph  ->  ps )   =>    |- 
 E. x ps
 
Theoremalinexa 1540 A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
 |-  ( A. x (
 ph  ->  -.  ps )  <->  -. 
 E. x ( ph  /\ 
 ps ) )
 
Theoremexbi 1541 Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( E. x ph  <->  E. x ps )
 )
 
Theoremexbii 1542 Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x ph  <->  E. x ps )
 
Theorem2exbii 1543 Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x E. y ph  <->  E. x E. y ps )
 
Theorem3exbii 1544 Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x E. y E. z ph  <->  E. x E. y E. z ps )
 
Theoremexancom 1545 Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
 |-  ( E. x (
 ph  /\  ps )  <->  E. x ( ps  /\  ph ) )
 
Theoremalrimdd 1546 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x ch )
 )
 
Theoremalrimd 1547 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x ch )
 )
 
Theoremeximdh 1548 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( E. x ps  ->  E. x ch ) )
 
Theoremeximd 1549 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( E. x ps  ->  E. x ch ) )
 
Theoremnexd 1550 Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  -. 
 ps )   =>    |-  ( ph  ->  -.  E. x ps )
 
Theoremexbidh 1551 Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. x ch )
 )
 
Theoremalbid 1552 Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. x ch )
 )
 
Theoremexbid 1553 Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. x ch )
 )
 
Theoremexsimpl 1554 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( E. x (
 ph  /\  ps )  ->  E. x ph )
 
Theoremexsimpr 1555 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( E. x (
 ph  /\  ps )  ->  E. x ps )
 
Theoremalexdc 1556 Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1582. (Contributed by Jim Kingdon, 2-Jun-2018.)
 |-  ( A. xDECID  ph  ->  (
 A. x ph  <->  -.  E. x  -.  ph ) )
 
Theorem19.29 1557 Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( A. x ph 
 /\  E. x ps )  ->  E. x ( ph  /\ 
 ps ) )
 
Theorem19.29r 1558 Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
 |-  ( ( E. x ph 
 /\  A. x ps )  ->  E. x ( ph  /\ 
 ps ) )
 
Theorem19.29r2 1559 Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.)
 |-  ( ( E. x E. y ph  /\  A. x A. y ps )  ->  E. x E. y
 ( ph  /\  ps )
 )
 
Theorem19.29x 1560 Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.)
 |-  ( ( E. x A. y ph  /\  A. x E. y ps )  ->  E. x E. y
 ( ph  /\  ps )
 )
 
Theorem19.35-1 1561 Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic (Contributed by Mario Carneiro, 2-Feb-2015.)
 |-  ( E. x (
 ph  ->  ps )  ->  ( A. x ph  ->  E. x ps ) )
 
Theorem19.35i 1562 Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
 |- 
 E. x ( ph  ->  ps )   =>    |-  ( A. x ph  ->  E. x ps )
 
Theorem19.25 1563 Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
 |-  ( A. y E. x ( ph  ->  ps )  ->  ( E. y A. x ph  ->  E. y E. x ps ) )
 
Theorem19.30dc 1564 Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.)
 |-  (DECID 
 E. x ps  ->  (
 A. x ( ph  \/  ps )  ->  ( A. x ph  \/  E. x ps ) ) )
 
Theorem19.43 1565 Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
 |-  ( E. x (
 ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
 
Theorem19.33b2 1566 The antecedent provides a condition implying the converse of 19.33 1419. Compare Theorem 19.33 of [Margaris] p. 90. This variation of 19.33bdc 1567 is intuitionistically valid without a decidability condition. (Contributed by Mario Carneiro, 2-Feb-2015.)
 |-  ( ( -.  E. x ph  \/  -.  E. x ps )  ->  ( A. x ( ph  \/  ps )  <->  ( A. x ph 
 \/  A. x ps )
 ) )
 
Theorem19.33bdc 1567 Converse of 19.33 1419 given  -.  ( E. x ph  /\ 
E. x ps ) and a decidability condition. Compare Theorem 19.33 of [Margaris] p. 90. For a version which does not require a decidability condition, see 19.33b2 1566 (Contributed by Jim Kingdon, 23-Apr-2018.)
 |-  (DECID 
 E. x ph  ->  ( -.  ( E. x ph 
 /\  E. x ps )  ->  ( A. x (
 ph  \/  ps )  <->  (
 A. x ph  \/  A. x ps ) ) ) )
 
Theorem19.40 1568 Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x (
 ph  /\  ps )  ->  ( E. x ph  /\ 
 E. x ps )
 )
 
Theorem19.40-2 1569 Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
 |-  ( E. x E. y ( ph  /\  ps )  ->  ( E. x E. y ph  /\  E. x E. y ps )
 )
 
Theoremexintrbi 1570 Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( E. x ph  <->  E. x ( ph  /\ 
 ps ) ) )
 
Theoremexintr 1571 Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( E. x ph  ->  E. x ( ph  /\  ps )
 ) )
 
Theoremalsyl 1572 Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.)
 |-  ( ( A. x ( ph  ->  ps )  /\  A. x ( ps 
 ->  ch ) )  ->  A. x ( ph  ->  ch ) )
 
Theoremhbex 1573 If  x is not free in  ph, it is not free in  E. y ph. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( E. y ph  ->  A. x E. y ph )
 
Theoremnfex 1574 If  x is not free in  ph, it is not free in  E. y ph. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
 |- 
 F/ x ph   =>    |- 
 F/ x E. y ph
 
Theorem19.2 1575 Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.)
 |-  ( A. x ph  ->  E. y ph )
 
Theoremi19.24 1576 Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1561, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
 |-  ( ( A. x ph 
 ->  E. x ps )  ->  E. x ( ph  ->  ps ) )   =>    |-  ( ( A. x ph  ->  A. x ps )  ->  E. x ( ph  ->  ps ) )
 
Theoremi19.39 1577 Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1561, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
 |-  ( ( A. x ph 
 ->  E. x ps )  ->  E. x ( ph  ->  ps ) )   =>    |-  ( ( E. x ph  ->  E. x ps )  ->  E. x ( ph  ->  ps )
 )
 
Theorem19.9ht 1578 A closed version of one direction of 19.9 1581. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x (
 ph  ->  A. x ph )  ->  ( E. x ph  -> 
 ph ) )
 
Theorem19.9t 1579 A closed version of 19.9 1581. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.)
 |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )
 
Theorem19.9h 1580 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( E. x ph  <->  ph )
 
Theorem19.9 1581 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
 |- 
 F/ x ph   =>    |-  ( E. x ph  <->  ph )
 
Theoremalexim 1582 One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1556. (Contributed by Jim Kingdon, 2-Jul-2018.)
 |-  ( A. x ph  ->  -.  E. x  -.  ph )
 
Theoremexnalim 1583 One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
 |-  ( E. x  -.  ph 
 ->  -.  A. x ph )
 
Theoremexanaliim 1584 A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
 |-  ( E. x (
 ph  /\  -.  ps )  ->  -.  A. x (
 ph  ->  ps ) )
 
Theoremalexnim 1585 A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
 |-  ( A. x E. y  -.  ph  ->  -.  E. x A. y ph )
 
Theoremax6blem 1586 If  x is not free in  ph, it is not free in  -.  ph. This theorem doesn't use ax6b 1587 compared to hbnt 1589. (Contributed by GD, 27-Jan-2018.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( -.  ph  ->  A. x  -.  ph )
 
Theoremax6b 1587 Quantified Negation. Axiom C5-2 of [Monk2] p. 113.

(Contributed by GD, 27-Jan-2018.)

 |-  ( -.  A. x ph 
 ->  A. x  -.  A. x ph )
 
Theoremhbn1 1588  x is not free in  -.  A. x ph. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
 |-  ( -.  A. x ph 
 ->  A. x  -.  A. x ph )
 
Theoremhbnt 1589 Closed theorem version of bound-variable hypothesis builder hbn 1590. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
 |-  ( A. x (
 ph  ->  A. x ph )  ->  ( -.  ph  ->  A. x  -.  ph )
 )
 
Theoremhbn 1590 If  x is not free in  ph, it is not free in  -.  ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( -.  ph  ->  A. x  -.  ph )
 
Theoremhbnd 1591 Deduction form of bound-variable hypothesis builder hbn 1590. (Contributed by NM, 3-Jan-2002.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  ( -.  ps  ->  A. x  -.  ps ) )
 
Theoremnfnt 1592 If  x is not free in  ph, then it is not free in  -.  ph. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.)
 |-  ( F/ x ph  ->  F/ x  -.  ph )
 
Theoremnfnd 1593 Deduction associated with nfnt 1592. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x  -.  ps )
 
Theoremnfn 1594 Inference associated with nfnt 1592. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x  -.  ph
 
Theoremnfdc 1595 If  x is not free in  ph, it is not free in DECID  ph. (Contributed by Jim Kingdon, 11-Mar-2018.)
 |- 
 F/ x ph   =>    |- 
 F/ xDECID 
 ph
 
Theoremmodal-5 1596 The analog in our predicate calculus of axiom 5 of modal logic S5. (Contributed by NM, 5-Oct-2005.)
 |-  ( -.  A. x  -.  ph  ->  A. x  -.  A. x  -.  ph )
 
Theorem19.9d 1597 A deduction version of one direction of 19.9 1581. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |-  ( ps  ->  F/ x ph )   =>    |-  ( ps  ->  ( E. x ph  ->  ph )
 )
 
Theorem19.9hd 1598 A deduction version of one direction of 19.9 1581. This is an older variation of this theorem; new proofs should use 19.9d 1597. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
 |-  ( ps  ->  A. x ps )   &    |-  ( ps  ->  (
 ph  ->  A. x ph )
 )   =>    |-  ( ps  ->  ( E. x ph  ->  ph )
 )
 
Theoremexcomim 1599 One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x E. y ph  ->  E. y E. x ph )
 
Theoremexcom 1600 Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x E. y ph  <->  E. y E. x ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12193
  Copyright terms: Public domain < Previous  Next >