HomeHome Intuitionistic Logic Explorer
Theorem List (p. 16 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1501-1600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremalimi 1501 Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x ph  ->  A. x ps )
 
Theorem2alimi 1502 Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x A. y ph  ->  A. x A. y ps )
 
Theoremalim 1503 Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 30-Mar-2008.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
 
Theoremal2imi 1504 Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( A. x ph 
 ->  ( A. x ps  ->  A. x ch )
 )
 
Theoremalanimi 1505 Variant of al2imi 1504 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( A. x ph 
 /\  A. x ps )  ->  A. x ch )
 
Syntaxwnf 1506 Extend wff definition to include the not-free predicate.
 wff  F/ x ph
 
Definitiondf-nf 1507 Define the not-free predicate for wffs. This is read " x is not free in  ph". Not-free means that the value of  x cannot affect the value of  ph, e.g., any occurrence of  x in  ph is effectively bound by a "for all" or something that expands to one (such as "there exists"). In particular, substitution for a variable not free in a wff does not affect its value (sbf 1823). An example of where this is used is stdpc5 1630. See nf2 1714 for an alternate definition which does not involve nested quantifiers on the same variable.

Nonfreeness is a commonly used condition, so it is useful to have a notation for it. Surprisingly, there is no common formal notation for it, so here we devise one. Our definition lets us work with the notion of nonfreeness within the logic itself rather than as a metalogical side condition.

To be precise, our definition really means "effectively not free", because it is slightly less restrictive than the usual textbook definition for "not free" (which considers syntactic freedom). For example,  x is effectively not free in the expression  x  =  x (even though  x is syntactically free in it, so would be considered "free" in the usual textbook definition) because the value of  x in the formula  x  =  x does not affect the truth of that formula (and thus substitutions will not change the result), see nfequid 1748. (Contributed by Mario Carneiro, 11-Aug-2016.)

 |-  ( F/ x ph  <->  A. x ( ph  ->  A. x ph ) )
 
Theoremnfi 1508 Deduce that  x is not free in  ph from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  ->  A. x ph )   =>    |- 
 F/ x ph
 
Theoremhbth 1509 No variable is (effectively) free in a theorem.

This and later "hypothesis-building" lemmas, with labels starting "hb...", allow us to construct proofs of formulas of the form  |-  ( ph  ->  A. x ph ) from smaller formulas of this form. These are useful for constructing hypotheses that state " x is (effectively) not free in  ph". (Contributed by NM, 5-Aug-1993.)

 |-  ph   =>    |-  ( ph  ->  A. x ph )
 
Theoremnfth 1510 No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ph   =>    |- 
 F/ x ph
 
Theoremnfnth 1511 No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.)
 |- 
 -.  ph   =>    |- 
 F/ x ph
 
Theoremnftru 1512 The true constant has no free variables. (This can also be proven in one step with nfv 1574, but this proof does not use ax-17 1572.) (Contributed by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ x T.
 
Theoremalimdh 1513 Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 4-Jan-2002.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  A. x ch ) )
 
Theoremalbi 1514 Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( A. x ph  <->  A. x ps )
 )
 
Theoremalrimih 1515 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ps )   =>    |-  ( ph  ->  A. x ps )
 
Theoremalbii 1516 Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x ph  <->  A. x ps )
 
Theorem2albii 1517 Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x A. y ph  <->  A. x A. y ps )
 
Theoremhbxfrbi 1518 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ps )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ph  ->  A. x ph )
 
Theoremnfbii 1519 Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( F/ x ph  <->  F/ x ps )
 
Theoremnfxfr 1520 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  <->  ps )   &    |-  F/ x ps   =>    |-  F/ x ph
 
Theoremnfxfrd 1521 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  <->  ps )   &    |-  ( ch  ->  F/ x ps )   =>    |-  ( ch  ->  F/ x ph )
 
Theoremalcoms 1522 Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.)
 |-  ( A. x A. y ph  ->  ps )   =>    |-  ( A. y A. x ph  ->  ps )
 
Theoremhbal 1523 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( A. y ph  ->  A. x A. y ph )
 
Theoremalcom 1524 Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  <->  A. y A. x ph )
 
Theoremalrimdh 1525 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x ch )
 )
 
Theoremalbidh 1526 Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. x ch )
 )
 
Theorem19.26 1527 Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
 |-  ( A. x (
 ph  /\  ps )  <->  (
 A. x ph  /\  A. x ps ) )
 
Theorem19.26-2 1528 Theorem 19.26 of [Margaris] p. 90 with two quantifiers. (Contributed by NM, 3-Feb-2005.)
 |-  ( A. x A. y ( ph  /\  ps ) 
 <->  ( A. x A. y ph  /\  A. x A. y ps ) )
 
Theorem19.26-3an 1529 Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
 |-  ( A. x (
 ph  /\  ps  /\  ch ) 
 <->  ( A. x ph  /\ 
 A. x ps  /\  A. x ch ) )
 
Theorem19.33 1530 Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( A. x ph 
 \/  A. x ps )  ->  A. x ( ph  \/  ps ) )
 
Theoremalrot3 1531 Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
 |-  ( A. x A. y A. z ph  <->  A. y A. z A. x ph )
 
Theoremalrot4 1532 Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 28-Jun-2014.)
 |-  ( A. x A. y A. z A. w ph  <->  A. z A. w A. x A. y ph )
 
Theoremalbiim 1533 Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
 |-  ( A. x (
 ph 
 <->  ps )  <->  ( A. x ( ph  ->  ps )  /\  A. x ( ps 
 ->  ph ) ) )
 
Theorem2albiim 1534 Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.)
 |-  ( A. x A. y ( ph  <->  ps )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps  ->  ph ) ) )
 
Theoremhband 1535 Deduction form of bound-variable hypothesis builder hban 1593. (Contributed by NM, 2-Jan-2002.)
 |-  ( ph  ->  ( ps  ->  A. x ps )
 )   &    |-  ( ph  ->  ( ch  ->  A. x ch )
 )   =>    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  A. x ( ps 
 /\  ch ) ) )
 
Theoremhb3and 1536 Deduction form of bound-variable hypothesis builder hb3an 1596. (Contributed by NM, 17-Feb-2013.)
 |-  ( ph  ->  ( ps  ->  A. x ps )
 )   &    |-  ( ph  ->  ( ch  ->  A. x ch )
 )   &    |-  ( ph  ->  ( th  ->  A. x th )
 )   =>    |-  ( ph  ->  (
 ( ps  /\  ch  /\ 
 th )  ->  A. x ( ps  /\  ch  /\  th ) ) )
 
Theoremhbald 1537 Deduction form of bound-variable hypothesis builder hbal 1523. (Contributed by NM, 2-Jan-2002.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  ( A. y ps  ->  A. x A. y ps ) )
 
Syntaxwex 1538 Extend wff definition to include the existential quantifier ("there exists").
 wff  E. x ph
 
Axiomax-ie1 1539  x is bound in  E. x ph. One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
 |-  ( E. x ph  ->  A. x E. x ph )
 
Axiomax-ie2 1540 Define existential quantification.  E. x ph means "there exists at least one set  x such that  ph is true". One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
 
Theoremhbe1 1541  x is not free in  E. x ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x ph  ->  A. x E. x ph )
 
Theoremnfe1 1542  x is not free in  E. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x E. x ph
 
Theorem19.23ht 1543 Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 1-Feb-2015.)
 |-  ( A. x ( ps  ->  A. x ps )  ->  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) ) )
 
Theorem19.23h 1544 Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.)
 |-  ( ps  ->  A. x ps )   =>    |-  ( A. x (
 ph  ->  ps )  <->  ( E. x ph 
 ->  ps ) )
 
Theoremalnex 1545 Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if  ph can be refuted for all 
x, then it is not possible to find an  x for which  ph holds" (and likewise for the converse). Comparing this with dfexdc 1547 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.)
 |-  ( A. x  -.  ph  <->  -. 
 E. x ph )
 
Theoremnex 1546 Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
 |- 
 -.  ph   =>    |- 
 -.  E. x ph
 
Theoremdfexdc 1547 Defining  E. x ph given decidability. It is common in classical logic to define  E. x ph as  -.  A. x -.  ph but in intuitionistic logic without a decidability condition, that is only an implication not an equivalence, as seen at exalim 1548. (Contributed by Jim Kingdon, 15-Mar-2018.)
 |-  (DECID 
 E. x ph  ->  ( E. x ph  <->  -.  A. x  -.  ph ) )
 
Theoremexalim 1548 One direction of a classical definition of existential quantification. One direction of Definition of [Margaris] p. 49. For a decidable proposition, this is an equivalence, as seen as dfexdc 1547. (Contributed by Jim Kingdon, 29-Jul-2018.)
 |-  ( E. x ph  ->  -.  A. x  -.  ph )
 
1.3.2  Equality predicate (continued)

The equality predicate was introduced above in wceq 1395 for use by df-tru 1398. See the comments in that section. In this section, we continue with the first "real" use of it.

 
Theoremweq 1549 Extend wff definition to include atomic formulas using the equality predicate.

(Instead of introducing weq 1549 as an axiomatic statement, as was done in an older version of this database, we introduce it by "proving" a special case of set theory's more general wceq 1395. This lets us avoid overloading the  = connective, thus preventing ambiguity that would complicate certain Metamath parsers. However, logically weq 1549 is considered to be a primitive syntax, even though here it is artificially "derived" from wceq 1395. Note: To see the proof steps of this syntax proof, type "show proof weq /all" in the Metamath program.) (Contributed by NM, 24-Jan-2006.)

 wff  x  =  y
 
Axiomax-8 1550 Axiom of Equality. One of the equality and substitution axioms of predicate calculus with equality. This is similar to, but not quite, a transitive law for equality (proved later as equtr 1755). Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105.

Axioms ax-8 1550 through ax-16 1860 are the axioms having to do with equality, substitution, and logical properties of our binary predicate  e. (which later in set theory will mean "is a member of"). Note that all axioms except ax-16 1860 and ax-17 1572 are still valid even when  x,  y, and  z are replaced with the same variable because they do not have any distinct variable (Metamath's $d) restrictions. Distinct variable restrictions are required for ax-16 1860 and ax-17 1572 only. (Contributed by NM, 5-Aug-1993.)

 |-  ( x  =  y 
 ->  ( x  =  z 
 ->  y  =  z
 ) )
 
Axiomax-10 1551 Axiom of Quantifier Substitution. One of the equality and substitution axioms of predicate calculus with equality. Appears as Lemma L12 in [Megill] p. 445 (p. 12 of the preprint).

The original version of this axiom was ax-10o 1762 ("o" for "old") and was replaced with this shorter ax-10 1551 in May 2008. The old axiom is proved from this one as Theorem ax10o 1761. Conversely, this axiom is proved from ax-10o 1762 as Theorem ax10 1763. (Contributed by NM, 5-Aug-1993.)

 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Axiomax-11 1552 Axiom of Variable Substitution. One of the 5 equality axioms of predicate calculus. The final consequent  A. x ( x  =  y  ->  ph ) is a way of expressing " y substituted for  x in wff  ph " (cf. sb6 1933). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases.

Variants of this axiom which are equivalent in classical logic but which have not been shown to be equivalent for intuitionistic logic are ax11v 1873, ax11v2 1866 and ax-11o 1869. (Contributed by NM, 5-Aug-1993.)

 |-  ( x  =  y 
 ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Axiomax-i12 1553 Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever  z is distinct from  x and  y, and  x  =  y is true, then  x  =  y quantified with  z is also true. In other words,  z is irrelevant to the truth of 
x  =  y. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom has been modified from the original ax12 1558 for compatibility with intuitionistic logic. (Contributed by Mario Carneiro, 31-Jan-2015.) Use its alias ax12or 1554 instead, for labeling consistency. (New usage is discouraged.)

 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y ) ) )
 
Theoremax12or 1554 Alias for ax-i12 1553, to be used in place of it for labeling consistency. (Contributed by NM, 3-Feb-2015.)
 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y ) ) )
 
Axiomax-bndl 1555 Axiom of bundling. The general idea of this axiom is that two variables are either distinct or non-distinct. That idea could be expressed as  A. z z  =  x  \/  -.  A. z z  =  x. However, we instead choose an axiom which has many of the same consequences, but which is different with respect to a universe which contains only one object.  A. z
z  =  x holds if  z and  x are the same variable, likewise for  z and  y, and  A. x A. z ( x  =  y  ->  A. z
x  =  y ) holds if  z is distinct from the others (and the universe has at least two objects).

As with other statements of the form "x is decidable (either true or false)", this does not entail the full Law of the Excluded Middle (which is the proposition that all statements are decidable), but instead merely the assertion that particular kinds of statements are decidable (or in this case, an assertion similar to decidability).

This axiom implies ax-i12 1553 as can be seen at axi12 1560. Whether ax-bndl 1555 can be proved from the remaining axioms including ax-i12 1553 is not known.

The reason we call this "bundling" is that a statement without a distinct variable constraint "bundles" together two statements, one in which the two variables are the same and one in which they are different. (Contributed by Mario Carneiro and Jim Kingdon, 14-Mar-2018.)

 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y ) ) )
 
Axiomax-4 1556 Axiom of Specialization. A quantified wff implies the wff without a quantifier (i.e. an instance, or special case, of the generalized wff). In other words if something is true for all  x, it is true for any specific  x (that would typically occur as a free variable in the wff substituted for  ph). (A free variable is one that does not occur in the scope of a quantifier:  x and  y are both free in  x  =  y, but only  x is free in  A. y x  =  y.) Axiom scheme C5' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom B5 of [Tarski] p. 67 (under his system S2, defined in the last paragraph on p. 77).

Note that the converse of this axiom does not hold in general, but a weaker inference form of the converse holds and is expressed as rule ax-gen 1495. Conditional forms of the converse are given by ax12 1558, ax-16 1860, and ax-17 1572.

Unlike the more general textbook Axiom of Specialization, we cannot choose a variable different from  x for the special case. For use, that requires the assistance of equality axioms, and we deal with it later after we introduce the definition of proper substitution - see stdpc4 1821.

(Contributed by NM, 5-Aug-1993.)

 |-  ( A. x ph  -> 
 ph )
 
Theoremsp 1557 Specialization. Another name for ax-4 1556. (Contributed by NM, 21-May-2008.)
 |-  ( A. x ph  -> 
 ph )
 
Theoremax12 1558 Rederive the original version of the axiom from ax-i12 1553. (Contributed by Mario Carneiro, 3-Feb-2015.)
 |-  ( -.  A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y ) ) )
 
Theoremhbequid 1559 Bound-variable hypothesis builder for  x  =  x. This theorem tells us that any variable, including  x, is effectively not free in  x  =  x, even though  x is technically free according to the traditional definition of free variable.

The proof uses only ax-8 1550 and ax-i12 1553 on top of (the FOL analogue of) modal logic KT. This shows that this can be proved without ax-i9 1576, even though Theorem equid 1747 cannot. A shorter proof using ax-i9 1576 is obtainable from equid 1747 and hbth 1509. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 23-Mar-2014.)

 |-  ( x  =  x 
 ->  A. y  x  =  x )
 
Theoremaxi12 1560 Proof that ax-i12 1553 follows from ax-bndl 1555. So that we can track which theorems rely on ax-bndl 1555, proofs should reference ax12or 1554 rather than this theorem. (Contributed by Jim Kingdon, 17-Aug-2018.) (New usage is discouraged). (Proof modification is discouraged.)
 |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y ) ) )
 
Theoremalequcom 1561 Commutation law for identical variable specifiers. The antecedent and consequent are true when  x and  y are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theoremalequcoms 1562 A commutation rule for identical variable specifiers. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x  x  =  y  ->  ph )   =>    |-  ( A. y  y  =  x  ->  ph )
 
Theoremnalequcoms 1563 A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 2-Feb-2015.)
 |-  ( -.  A. x  x  =  y  ->  ph )   =>    |-  ( -.  A. y  y  =  x  ->  ph )
 
Theoremnfr 1564 Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.)
 |-  ( F/ x ph  ->  ( ph  ->  A. x ph ) )
 
Theoremnfri 1565 Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |-  ( ph  ->  A. x ph )
 
Theoremnfrd 1566 Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  ( ps  ->  A. x ps )
 )
 
Theoremalimd 1567 Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  A. x ch ) )
 
Theoremalrimi 1568 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ps )   =>    |-  ( ph  ->  A. x ps )
 
Theoremnfd 1569 Deduce that  x is not free in  ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  F/ x ps )
 
Theoremnfdh 1570 Deduce that  x is not free in  ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  F/ x ps )
 
Theoremnfrimi 1571 Moving an antecedent outside  F/. (Contributed by Jim Kingdon, 23-Mar-2018.)
 |- 
 F/ x ph   &    |-  F/ x (
 ph  ->  ps )   =>    |-  ( ph  ->  F/ x ps )
 
1.3.3  Axiom ax-17 - first use of the $d distinct variable statement
 
Axiomax-17 1572* Axiom to quantify a variable over a formula in which it does not occur. Axiom C5 in [Megill] p. 444 (p. 11 of the preprint). Also appears as Axiom B6 (p. 75) of system S2 of [Tarski] p. 77 and Axiom C5-1 of [Monk2] p. 113.

(Contributed by NM, 5-Aug-1993.)

 |-  ( ph  ->  A. x ph )
 
Theorema17d 1573* ax-17 1572 with antecedent. (Contributed by NM, 1-Mar-2013.)
 |-  ( ph  ->  ( ps  ->  A. x ps )
 )
 
Theoremnfv 1574* If  x is not present in  ph, then  x is not free in  ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph
 
Theoremnfvd 1575* nfv 1574 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1631. (Contributed by Mario Carneiro, 6-Oct-2016.)
 |-  ( ph  ->  F/ x ps )
 
1.3.4  Introduce Axiom of Existence
 
Axiomax-i9 1576 Axiom of Existence. One of the equality and substitution axioms of predicate calculus with equality. One thing this axiom tells us is that at least one thing exists (although ax-4 1556 and possibly others also tell us that, i.e. they are not valid in the empty domain of a "free logic"). In this form (not requiring that  x and  y be distinct) it was used in an axiom system of Tarski (see Axiom B7' in footnote 1 of [KalishMontague] p. 81.) Another name for this theorem is a9e 1742, which has additional remarks. (Contributed by Mario Carneiro, 31-Jan-2015.)
 |- 
 E. x  x  =  y
 
Theoremax-9 1577 Derive ax-9 1577 from ax-i9 1576, the modified version for intuitionistic logic. Although ax-9 1577 does hold intuistionistically, in intuitionistic logic it is weaker than ax-i9 1576. (Contributed by NM, 3-Feb-2015.)
 |- 
 -.  A. x  -.  x  =  y
 
Theoremequidqe 1578 equid 1747 with some quantification and negation without using ax-4 1556 or ax-17 1572. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.)
 |- 
 -.  A. y  -.  x  =  x
 
Theoremax4sp1 1579 A special case of ax-4 1556 without using ax-4 1556 or ax-17 1572. (Contributed by NM, 13-Jan-2011.)
 |-  ( A. y  -.  x  =  x  ->  -.  x  =  x )
 
1.3.5  Additional intuitionistic axioms
 
Axiomax-ial 1580  x is not free in  A. x ph. One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
 |-  ( A. x ph  ->  A. x A. x ph )
 
Axiomax-i5r 1581 Axiom of quantifier collection. (Contributed by Mario Carneiro, 31-Jan-2015.)
 |-  ( ( A. x ph 
 ->  A. x ps )  ->  A. x ( A. x ph  ->  ps )
 )
 
1.3.6  Predicate calculus including ax-4, without distinct variables
 
Theoremspi 1582 Inference reversing generalization (specialization). (Contributed by NM, 5-Aug-1993.)
 |- 
 A. x ph   =>    |-  ph
 
Theoremsps 1583 Generalization of antecedent. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x ph  ->  ps )
 
Theoremspsd 1584 Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  ->  ch ) )
 
Theoremnfbidf 1585 An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( F/ x ps  <->  F/ x ch )
 )
 
Theoremhba1 1586  x is not free in  A. x ph. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x ph  ->  A. x A. x ph )
 
Theoremnfa1 1587  x is not free in  A. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x A. x ph
 
Theoremaxc4i 1588 Inference version of 19.21 1629. (Contributed by NM, 3-Jan-1993.)
 |-  ( A. x ph  ->  ps )   =>    |-  ( A. x ph  ->  A. x ps )
 
Theorema5i 1589 Inference generalizing a consequent. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x ph  ->  ps )   =>    |-  ( A. x ph  ->  A. x ps )
 
Theoremnfnf1 1590  x is not free in  F/ x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x F/ x ph
 
Theoremhbim 1591 If  x is not free in  ph and  ps, it is not free in  ( ph  ->  ps ). (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Revised by Mario Carneiro, 2-Feb-2015.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps )
 )
 
Theoremhbor 1592 If  x is not free in  ph and  ps, it is not free in  ( ph  \/  ps ). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ( ph  \/  ps )  ->  A. x ( ph  \/  ps )
 )
 
Theoremhban 1593 If  x is not free in  ph and  ps, it is not free in  ( ph  /\  ps ). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ( ph  /\ 
 ps )  ->  A. x ( ph  /\  ps )
 )
 
Theoremhbbi 1594 If  x is not free in  ph and  ps, it is not free in  ( ph  <->  ps ). (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ( ph  <->  ps )  ->  A. x ( ph  <->  ps ) )
 
Theoremhb3or 1595 If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  \/  ps  \/  ch ). (Contributed by NM, 14-Sep-2003.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( ch  ->  A. x ch )   =>    |-  (
 ( ph  \/  ps  \/  ch )  ->  A. x (
 ph  \/  ps  \/  ch ) )
 
Theoremhb3an 1596 If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  /\  ps  /\  ch ). (Contributed by NM, 14-Sep-2003.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( ch  ->  A. x ch )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  A. x (
 ph  /\  ps  /\  ch ) )
 
Theoremhba2 1597 Lemma 24 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.)
 |-  ( A. y A. x ph  ->  A. x A. y A. x ph )
 
Theoremhbia1 1598 Lemma 23 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.)
 |-  ( ( A. x ph 
 ->  A. x ps )  ->  A. x ( A. x ph  ->  A. x ps ) )
 
Theorem19.3h 1599 A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-May-2007.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( A. x ph  <->  ph )
 
Theorem19.3 1600 A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   =>    |-  ( A. x ph  <->  ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >