ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-11 Unicode version

Axiom ax-11 1467
Description: Axiom of Variable Substitution. One of the 5 equality axioms of predicate calculus. The final consequent  A. x ( x  =  y  ->  ph ) is a way of expressing " y substituted for  x in wff  ph " (cf. sb6 1840). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases.

Variants of this axiom which are equivalent in classical logic but which have not been shown to be equivalent for intuitionistic logic are ax11v 1781, ax11v2 1774 and ax-11o 1777. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
ax-11  |-  ( x  =  y  ->  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) ) )

Detailed syntax breakdown of Axiom ax-11
StepHypRef Expression
1 vx . . 3  setvar  x
2 vy . . 3  setvar  y
31, 2weq 1462 . 2  wff  x  =  y
4 wph . . . 4  wff  ph
54, 2wal 1312 . . 3  wff  A. y ph
63, 4wi 4 . . . 4  wff  ( x  =  y  ->  ph )
76, 1wal 1312 . . 3  wff  A. x
( x  =  y  ->  ph )
85, 7wi 4 . 2  wff  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) )
93, 8wi 4 1  wff  ( x  =  y  ->  ( A. y ph  ->  A. x
( x  =  y  ->  ph ) ) )
Colors of variables: wff set class
This axiom is referenced by:  ax10o  1676  equs5a  1748  sbcof2  1764  ax11o  1776  ax11v  1781
  Copyright terms: Public domain W3C validator