ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcl Unicode version

Axiom ax-mulcl 8005
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7961. Proofs should normally use mulcl 8034 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )

Detailed syntax breakdown of Axiom ax-mulcl
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7905 . . . 4  class  CC
31, 2wcel 2175 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2175 . . 3  wff  B  e.  CC
63, 5wa 104 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 cmul 7912 . . . 4  class  x.
81, 4, 7co 5934 . . 3  class  ( A  x.  B )
98, 2wcel 2175 . 2  wff  ( A  x.  B )  e.  CC
106, 9wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
Colors of variables: wff set class
This axiom is referenced by:  mulcl  8034
  Copyright terms: Public domain W3C validator