ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcl Unicode version

Axiom ax-mulcl 7977
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7933. Proofs should normally use mulcl 8006 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )

Detailed syntax breakdown of Axiom ax-mulcl
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7877 . . . 4  class  CC
31, 2wcel 2167 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2167 . . 3  wff  B  e.  CC
63, 5wa 104 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 cmul 7884 . . . 4  class  x.
81, 4, 7co 5922 . . 3  class  ( A  x.  B )
98, 2wcel 2167 . 2  wff  ( A  x.  B )  e.  CC
106, 9wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
Colors of variables: wff set class
This axiom is referenced by:  mulcl  8006
  Copyright terms: Public domain W3C validator