ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulrcl Unicode version

Axiom ax-mulrcl 7973
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7929. Proofs should normally use remulcl 8002 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulrcl  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )

Detailed syntax breakdown of Axiom ax-mulrcl
StepHypRef Expression
1 cA . . . 4  class  A
2 cr 7873 . . . 4  class  RR
31, 2wcel 2164 . . 3  wff  A  e.  RR
4 cB . . . 4  class  B
54, 2wcel 2164 . . 3  wff  B  e.  RR
63, 5wa 104 . 2  wff  ( A  e.  RR  /\  B  e.  RR )
7 cmul 7879 . . . 4  class  x.
81, 4, 7co 5919 . . 3  class  ( A  x.  B )
98, 2wcel 2164 . 2  wff  ( A  x.  B )  e.  RR
106, 9wi 4 1  wff  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
Colors of variables: wff set class
This axiom is referenced by:  remulcl  8002
  Copyright terms: Public domain W3C validator