ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcl Unicode version

Theorem axmulcl 7401
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7441 be used later. Instead, in most cases use mulcl 7467. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )

Proof of Theorem axmulcl
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4454 . . . . 5  |-  ( A  e.  ( R.  X.  R. )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
2 df-c 7354 . . . . 5  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2182 . . . 4  |-  ( A  e.  CC  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
4 elxpi 4454 . . . . 5  |-  ( B  e.  ( R.  X.  R. )  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
54, 2eleq2s 2182 . . . 4  |-  ( B  e.  CC  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
63, 5anim12i 331 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
)  /\  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) ) )
7 ee4anv 1857 . . 3  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  <->  ( E. x E. y ( A  =  <. x ,  y
>.  /\  ( x  e. 
R.  /\  y  e.  R. ) )  /\  E. z E. w ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
86, 7sylibr 132 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
9 simpll 496 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  A  =  <. x ,  y >. )
10 simprl 498 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  B  =  <. z ,  w >. )
119, 10oveq12d 5670 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  =  ( <.
x ,  y >.  x.  <. z ,  w >. ) )
12 mulcnsr 7370 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( <. x ,  y >.  x.  <. z ,  w >. )  =  <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. )
1312ad2ant2l 492 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( <. x ,  y
>.  x.  <. z ,  w >. )  =  <. (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. )
1411, 13eqtrd 2120 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  =  <. (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. )
15 simplrl 502 . . . . . . . . 9  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  x  e.  R. )
16 simprrl 506 . . . . . . . . 9  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
z  e.  R. )
17 mulclsr 7298 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  e.  R. )
1815, 16, 17syl2anc 403 . . . . . . . 8  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( x  .R  z
)  e.  R. )
19 m1r 7296 . . . . . . . . . 10  |-  -1R  e.  R.
2019a1i 9 . . . . . . . . 9  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  -1R  e.  R. )
21 simplrr 503 . . . . . . . . . 10  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
y  e.  R. )
22 simprrr 507 . . . . . . . . . 10  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  w  e.  R. )
23 mulclsr 7298 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  e.  R. )
2421, 22, 23syl2anc 403 . . . . . . . . 9  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( y  .R  w
)  e.  R. )
25 mulclsr 7298 . . . . . . . . 9  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
2620, 24, 25syl2anc 403 . . . . . . . 8  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( -1R  .R  (
y  .R  w )
)  e.  R. )
27 addclsr 7297 . . . . . . . 8  |-  ( ( ( x  .R  z
)  e.  R.  /\  ( -1R  .R  ( y  .R  w ) )  e.  R. )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
2818, 26, 27syl2anc 403 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
29 mulclsr 7298 . . . . . . . . 9  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  e.  R. )
3021, 16, 29syl2anc 403 . . . . . . . 8  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( y  .R  z
)  e.  R. )
31 mulclsr 7298 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  e.  R. )
3215, 22, 31syl2anc 403 . . . . . . . 8  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( x  .R  w
)  e.  R. )
33 addclsr 7297 . . . . . . . 8  |-  ( ( ( y  .R  z
)  e.  R.  /\  ( x  .R  w
)  e.  R. )  ->  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
3430, 32, 33syl2anc 403 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
35 opelxpi 4469 . . . . . . 7  |-  ( ( ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R.  /\  (
( y  .R  z
)  +R  ( x  .R  w ) )  e.  R. )  ->  <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >.  e.  ( R.  X.  R. )
)
3628, 34, 35syl2anc 403 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >.  e.  ( R.  X.  R. )
)
3736, 2syl6eleqr 2181 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >.  e.  CC )
3814, 37eqeltrd 2164 . . . 4  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  e.  CC )
3938exlimivv 1824 . . 3  |-  ( E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  e.  CC )
4039exlimivv 1824 . 2  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  e.  CC )
418, 40syl 14 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289   E.wex 1426    e. wcel 1438   <.cop 3449    X. cxp 4436  (class class class)co 5652   R.cnr 6854   -1Rcm1r 6857    +R cplr 6858    .R cmr 6859   CCcc 7346    x. cmul 7353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-pli 6862  df-mi 6863  df-lti 6864  df-plpq 6901  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-plqqs 6906  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910  df-enq0 6981  df-nq0 6982  df-0nq0 6983  df-plq0 6984  df-mq0 6985  df-inp 7023  df-i1p 7024  df-iplp 7025  df-imp 7026  df-enr 7270  df-nr 7271  df-plr 7272  df-mr 7273  df-m1r 7277  df-c 7354  df-mul 7360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator