| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | Unicode version | ||
| Description: Alias for ax-mulcl 7994, for naming consistency with mulcli 8048. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 7994 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mulcl 7994 |
| This theorem is referenced by: mpomulf 8033 0cn 8035 mulrid 8040 mulcli 8048 mulcld 8064 mul31 8174 mul4 8175 muladd11r 8199 cnegexlem2 8219 cnegex 8221 muladd 8427 subdi 8428 mul02 8430 submul2 8442 mulsub 8444 recextlem1 8695 recexap 8697 muleqadd 8712 divassap 8734 divmulassap 8739 divmuldivap 8756 divmuleqap 8761 divadddivap 8771 conjmulap 8773 cju 9005 ofnegsub 9006 zneo 9444 exp3vallem 10649 exp3val 10650 exp1 10654 expp1 10655 expcl 10666 expclzaplem 10672 mulexp 10687 sqcl 10709 subsq 10755 subsq2 10756 binom2sub 10762 mulbinom2 10765 binom3 10766 zesq 10767 bernneq 10769 bernneq2 10770 mulsubdivbinom2ap 10820 facnn 10836 fac0 10837 fac1 10838 facp1 10839 bcval5 10872 bcn2 10873 reim 11034 imcl 11036 crre 11039 crim 11040 remim 11042 mulreap 11046 cjreb 11048 recj 11049 reneg 11050 readd 11051 remullem 11053 remul2 11055 imcj 11057 imneg 11058 imadd 11059 immul2 11062 cjadd 11066 ipcnval 11068 cjmulrcl 11069 cjneg 11072 imval2 11076 cjreim 11085 rennim 11184 sqabsadd 11237 sqabssub 11238 absreimsq 11249 absreim 11250 absmul 11251 mul0inf 11423 mulcn2 11494 climmul 11509 isermulc2 11522 fsummulc2 11630 prodf 11720 clim2prod 11721 clim2divap 11722 prod3fmul 11723 prodf1 11724 prodfap0 11727 prodfrecap 11728 prodrbdclem 11753 fproddccvg 11754 prodmodclem3 11757 prodmodclem2a 11758 zproddc 11761 fprodseq 11765 fprodntrivap 11766 prodsnf 11774 fprodcl 11789 fprodclf 11817 efexp 11864 sinf 11886 cosf 11887 tanval2ap 11895 tanval3ap 11896 resinval 11897 recosval 11898 efi4p 11899 resin4p 11900 recos4p 11901 resincl 11902 recoscl 11903 sinneg 11908 cosneg 11909 efival 11914 efmival 11915 efeul 11916 sinadd 11918 cosadd 11919 sinsub 11922 cossub 11923 subsin 11925 sinmul 11926 cosmul 11927 addcos 11928 subcos 11929 cos2tsin 11933 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 absef 11952 absefib 11953 efieq1re 11954 demoivre 11955 demoivreALT 11956 odd2np1lem 12054 odd2np1 12055 opoe 12077 omoe 12078 opeo 12079 omeo 12080 modgcd 12183 qredeq 12289 modprm0 12448 pythagtriplem1 12459 pythagtriplem12 12469 pythagtriplem14 12471 gzmulcl 12572 4sqlem11 12595 4sqlem17 12601 cncrng 14201 cnfldmulg 14208 mpomulcn 14886 mulc1cncf 14909 mulcncflem 14927 dvmulxxbr 15022 dvmulxx 15024 dvimulf 15026 plymullem1 15068 plymulcl 15075 plysubcl 15076 efper 15127 sinperlem 15128 sin2kpi 15131 cos2kpi 15132 efimpi 15139 sincosq1eq 15159 abssinper 15166 sinkpi 15167 coskpi 15168 binom4 15299 fsumdvdsmul 15311 lgsdilem2 15361 lgsne0 15363 lgsquadlem1 15402 2sqlem2 15440 |
| Copyright terms: Public domain | W3C validator |