| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | Unicode version | ||
| Description: Alias for ax-mulcl 8093, for naming consistency with mulcli 8147. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 8093 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mulcl 8093 |
| This theorem is referenced by: mpomulf 8132 0cn 8134 mulrid 8139 mulcli 8147 mulcld 8163 mul31 8273 mul4 8274 muladd11r 8298 cnegexlem2 8318 cnegex 8320 muladd 8526 subdi 8527 mul02 8529 submul2 8541 mulsub 8543 recextlem1 8794 recexap 8796 muleqadd 8811 divassap 8833 divmulassap 8838 divmuldivap 8855 divmuleqap 8860 divadddivap 8870 conjmulap 8872 cju 9104 ofnegsub 9105 zneo 9544 exp3vallem 10757 exp3val 10758 exp1 10762 expp1 10763 expcl 10774 expclzaplem 10780 mulexp 10795 sqcl 10817 subsq 10863 subsq2 10864 binom2sub 10870 mulbinom2 10873 binom3 10874 zesq 10875 bernneq 10877 bernneq2 10878 mulsubdivbinom2ap 10928 facnn 10944 fac0 10945 fac1 10946 facp1 10947 bcval5 10980 bcn2 10981 reim 11358 imcl 11360 crre 11363 crim 11364 remim 11366 mulreap 11370 cjreb 11372 recj 11373 reneg 11374 readd 11375 remullem 11377 remul2 11379 imcj 11381 imneg 11382 imadd 11383 immul2 11386 cjadd 11390 ipcnval 11392 cjmulrcl 11393 cjneg 11396 imval2 11400 cjreim 11409 rennim 11508 sqabsadd 11561 sqabssub 11562 absreimsq 11573 absreim 11574 absmul 11575 mul0inf 11747 mulcn2 11818 climmul 11833 isermulc2 11846 fsummulc2 11954 prodf 12044 clim2prod 12045 clim2divap 12046 prod3fmul 12047 prodf1 12048 prodfap0 12051 prodfrecap 12052 prodrbdclem 12077 fproddccvg 12078 prodmodclem3 12081 prodmodclem2a 12082 zproddc 12085 fprodseq 12089 fprodntrivap 12090 prodsnf 12098 fprodcl 12113 fprodclf 12141 efexp 12188 sinf 12210 cosf 12211 tanval2ap 12219 tanval3ap 12220 resinval 12221 recosval 12222 efi4p 12223 resin4p 12224 recos4p 12225 resincl 12226 recoscl 12227 sinneg 12232 cosneg 12233 efival 12238 efmival 12239 efeul 12240 sinadd 12242 cosadd 12243 sinsub 12246 cossub 12247 subsin 12249 sinmul 12250 cosmul 12251 addcos 12252 subcos 12253 cos2tsin 12257 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 absef 12276 absefib 12277 efieq1re 12278 demoivre 12279 demoivreALT 12280 odd2np1lem 12378 odd2np1 12379 opoe 12401 omoe 12402 opeo 12403 omeo 12404 modgcd 12507 qredeq 12613 modprm0 12772 pythagtriplem1 12783 pythagtriplem12 12793 pythagtriplem14 12795 gzmulcl 12896 4sqlem11 12919 4sqlem17 12925 cncrng 14527 cnfldmulg 14534 mpomulcn 15234 mulc1cncf 15257 mulcncflem 15275 dvmulxxbr 15370 dvmulxx 15372 dvimulf 15374 plymullem1 15416 plymulcl 15423 plysubcl 15424 efper 15475 sinperlem 15476 sin2kpi 15479 cos2kpi 15480 efimpi 15487 sincosq1eq 15507 abssinper 15514 sinkpi 15515 coskpi 15516 binom4 15647 fsumdvdsmul 15659 lgsdilem2 15709 lgsne0 15711 lgsquadlem1 15750 2sqlem2 15788 |
| Copyright terms: Public domain | W3C validator |