| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | Unicode version | ||
| Description: Alias for ax-mulcl 8023, for naming consistency with mulcli 8077. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 8023 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mulcl 8023 |
| This theorem is referenced by: mpomulf 8062 0cn 8064 mulrid 8069 mulcli 8077 mulcld 8093 mul31 8203 mul4 8204 muladd11r 8228 cnegexlem2 8248 cnegex 8250 muladd 8456 subdi 8457 mul02 8459 submul2 8471 mulsub 8473 recextlem1 8724 recexap 8726 muleqadd 8741 divassap 8763 divmulassap 8768 divmuldivap 8785 divmuleqap 8790 divadddivap 8800 conjmulap 8802 cju 9034 ofnegsub 9035 zneo 9474 exp3vallem 10685 exp3val 10686 exp1 10690 expp1 10691 expcl 10702 expclzaplem 10708 mulexp 10723 sqcl 10745 subsq 10791 subsq2 10792 binom2sub 10798 mulbinom2 10801 binom3 10802 zesq 10803 bernneq 10805 bernneq2 10806 mulsubdivbinom2ap 10856 facnn 10872 fac0 10873 fac1 10874 facp1 10875 bcval5 10908 bcn2 10909 reim 11163 imcl 11165 crre 11168 crim 11169 remim 11171 mulreap 11175 cjreb 11177 recj 11178 reneg 11179 readd 11180 remullem 11182 remul2 11184 imcj 11186 imneg 11187 imadd 11188 immul2 11191 cjadd 11195 ipcnval 11197 cjmulrcl 11198 cjneg 11201 imval2 11205 cjreim 11214 rennim 11313 sqabsadd 11366 sqabssub 11367 absreimsq 11378 absreim 11379 absmul 11380 mul0inf 11552 mulcn2 11623 climmul 11638 isermulc2 11651 fsummulc2 11759 prodf 11849 clim2prod 11850 clim2divap 11851 prod3fmul 11852 prodf1 11853 prodfap0 11856 prodfrecap 11857 prodrbdclem 11882 fproddccvg 11883 prodmodclem3 11886 prodmodclem2a 11887 zproddc 11890 fprodseq 11894 fprodntrivap 11895 prodsnf 11903 fprodcl 11918 fprodclf 11946 efexp 11993 sinf 12015 cosf 12016 tanval2ap 12024 tanval3ap 12025 resinval 12026 recosval 12027 efi4p 12028 resin4p 12029 recos4p 12030 resincl 12031 recoscl 12032 sinneg 12037 cosneg 12038 efival 12043 efmival 12044 efeul 12045 sinadd 12047 cosadd 12048 sinsub 12051 cossub 12052 subsin 12054 sinmul 12055 cosmul 12056 addcos 12057 subcos 12058 cos2tsin 12062 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 absef 12081 absefib 12082 efieq1re 12083 demoivre 12084 demoivreALT 12085 odd2np1lem 12183 odd2np1 12184 opoe 12206 omoe 12207 opeo 12208 omeo 12209 modgcd 12312 qredeq 12418 modprm0 12577 pythagtriplem1 12588 pythagtriplem12 12598 pythagtriplem14 12600 gzmulcl 12701 4sqlem11 12724 4sqlem17 12730 cncrng 14331 cnfldmulg 14338 mpomulcn 15038 mulc1cncf 15061 mulcncflem 15079 dvmulxxbr 15174 dvmulxx 15176 dvimulf 15178 plymullem1 15220 plymulcl 15227 plysubcl 15228 efper 15279 sinperlem 15280 sin2kpi 15283 cos2kpi 15284 efimpi 15291 sincosq1eq 15311 abssinper 15318 sinkpi 15319 coskpi 15320 binom4 15451 fsumdvdsmul 15463 lgsdilem2 15513 lgsne0 15515 lgsquadlem1 15554 2sqlem2 15592 |
| Copyright terms: Public domain | W3C validator |