| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | Unicode version | ||
| Description: Alias for ax-mulcl 8058, for naming consistency with mulcli 8112. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 8058 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mulcl 8058 |
| This theorem is referenced by: mpomulf 8097 0cn 8099 mulrid 8104 mulcli 8112 mulcld 8128 mul31 8238 mul4 8239 muladd11r 8263 cnegexlem2 8283 cnegex 8285 muladd 8491 subdi 8492 mul02 8494 submul2 8506 mulsub 8508 recextlem1 8759 recexap 8761 muleqadd 8776 divassap 8798 divmulassap 8803 divmuldivap 8820 divmuleqap 8825 divadddivap 8835 conjmulap 8837 cju 9069 ofnegsub 9070 zneo 9509 exp3vallem 10722 exp3val 10723 exp1 10727 expp1 10728 expcl 10739 expclzaplem 10745 mulexp 10760 sqcl 10782 subsq 10828 subsq2 10829 binom2sub 10835 mulbinom2 10838 binom3 10839 zesq 10840 bernneq 10842 bernneq2 10843 mulsubdivbinom2ap 10893 facnn 10909 fac0 10910 fac1 10911 facp1 10912 bcval5 10945 bcn2 10946 reim 11278 imcl 11280 crre 11283 crim 11284 remim 11286 mulreap 11290 cjreb 11292 recj 11293 reneg 11294 readd 11295 remullem 11297 remul2 11299 imcj 11301 imneg 11302 imadd 11303 immul2 11306 cjadd 11310 ipcnval 11312 cjmulrcl 11313 cjneg 11316 imval2 11320 cjreim 11329 rennim 11428 sqabsadd 11481 sqabssub 11482 absreimsq 11493 absreim 11494 absmul 11495 mul0inf 11667 mulcn2 11738 climmul 11753 isermulc2 11766 fsummulc2 11874 prodf 11964 clim2prod 11965 clim2divap 11966 prod3fmul 11967 prodf1 11968 prodfap0 11971 prodfrecap 11972 prodrbdclem 11997 fproddccvg 11998 prodmodclem3 12001 prodmodclem2a 12002 zproddc 12005 fprodseq 12009 fprodntrivap 12010 prodsnf 12018 fprodcl 12033 fprodclf 12061 efexp 12108 sinf 12130 cosf 12131 tanval2ap 12139 tanval3ap 12140 resinval 12141 recosval 12142 efi4p 12143 resin4p 12144 recos4p 12145 resincl 12146 recoscl 12147 sinneg 12152 cosneg 12153 efival 12158 efmival 12159 efeul 12160 sinadd 12162 cosadd 12163 sinsub 12166 cossub 12167 subsin 12169 sinmul 12170 cosmul 12171 addcos 12172 subcos 12173 cos2tsin 12177 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 absef 12196 absefib 12197 efieq1re 12198 demoivre 12199 demoivreALT 12200 odd2np1lem 12298 odd2np1 12299 opoe 12321 omoe 12322 opeo 12323 omeo 12324 modgcd 12427 qredeq 12533 modprm0 12692 pythagtriplem1 12703 pythagtriplem12 12713 pythagtriplem14 12715 gzmulcl 12816 4sqlem11 12839 4sqlem17 12845 cncrng 14446 cnfldmulg 14453 mpomulcn 15153 mulc1cncf 15176 mulcncflem 15194 dvmulxxbr 15289 dvmulxx 15291 dvimulf 15293 plymullem1 15335 plymulcl 15342 plysubcl 15343 efper 15394 sinperlem 15395 sin2kpi 15398 cos2kpi 15399 efimpi 15406 sincosq1eq 15426 abssinper 15433 sinkpi 15434 coskpi 15435 binom4 15566 fsumdvdsmul 15578 lgsdilem2 15628 lgsne0 15630 lgsquadlem1 15669 2sqlem2 15707 |
| Copyright terms: Public domain | W3C validator |