| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcl | Unicode version | ||
| Description: Alias for ax-mulcl 8022, for naming consistency with mulcli 8076. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulcl 8022 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mulcl 8022 |
| This theorem is referenced by: mpomulf 8061 0cn 8063 mulrid 8068 mulcli 8076 mulcld 8092 mul31 8202 mul4 8203 muladd11r 8227 cnegexlem2 8247 cnegex 8249 muladd 8455 subdi 8456 mul02 8458 submul2 8470 mulsub 8472 recextlem1 8723 recexap 8725 muleqadd 8740 divassap 8762 divmulassap 8767 divmuldivap 8784 divmuleqap 8789 divadddivap 8799 conjmulap 8801 cju 9033 ofnegsub 9034 zneo 9473 exp3vallem 10683 exp3val 10684 exp1 10688 expp1 10689 expcl 10700 expclzaplem 10706 mulexp 10721 sqcl 10743 subsq 10789 subsq2 10790 binom2sub 10796 mulbinom2 10799 binom3 10800 zesq 10801 bernneq 10803 bernneq2 10804 mulsubdivbinom2ap 10854 facnn 10870 fac0 10871 fac1 10872 facp1 10873 bcval5 10906 bcn2 10907 reim 11134 imcl 11136 crre 11139 crim 11140 remim 11142 mulreap 11146 cjreb 11148 recj 11149 reneg 11150 readd 11151 remullem 11153 remul2 11155 imcj 11157 imneg 11158 imadd 11159 immul2 11162 cjadd 11166 ipcnval 11168 cjmulrcl 11169 cjneg 11172 imval2 11176 cjreim 11185 rennim 11284 sqabsadd 11337 sqabssub 11338 absreimsq 11349 absreim 11350 absmul 11351 mul0inf 11523 mulcn2 11594 climmul 11609 isermulc2 11622 fsummulc2 11730 prodf 11820 clim2prod 11821 clim2divap 11822 prod3fmul 11823 prodf1 11824 prodfap0 11827 prodfrecap 11828 prodrbdclem 11853 fproddccvg 11854 prodmodclem3 11857 prodmodclem2a 11858 zproddc 11861 fprodseq 11865 fprodntrivap 11866 prodsnf 11874 fprodcl 11889 fprodclf 11917 efexp 11964 sinf 11986 cosf 11987 tanval2ap 11995 tanval3ap 11996 resinval 11997 recosval 11998 efi4p 11999 resin4p 12000 recos4p 12001 resincl 12002 recoscl 12003 sinneg 12008 cosneg 12009 efival 12014 efmival 12015 efeul 12016 sinadd 12018 cosadd 12019 sinsub 12022 cossub 12023 subsin 12025 sinmul 12026 cosmul 12027 addcos 12028 subcos 12029 cos2tsin 12033 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 absef 12052 absefib 12053 efieq1re 12054 demoivre 12055 demoivreALT 12056 odd2np1lem 12154 odd2np1 12155 opoe 12177 omoe 12178 opeo 12179 omeo 12180 modgcd 12283 qredeq 12389 modprm0 12548 pythagtriplem1 12559 pythagtriplem12 12569 pythagtriplem14 12571 gzmulcl 12672 4sqlem11 12695 4sqlem17 12701 cncrng 14302 cnfldmulg 14309 mpomulcn 15009 mulc1cncf 15032 mulcncflem 15050 dvmulxxbr 15145 dvmulxx 15147 dvimulf 15149 plymullem1 15191 plymulcl 15198 plysubcl 15199 efper 15250 sinperlem 15251 sin2kpi 15254 cos2kpi 15255 efimpi 15262 sincosq1eq 15282 abssinper 15289 sinkpi 15290 coskpi 15291 binom4 15422 fsumdvdsmul 15434 lgsdilem2 15484 lgsne0 15486 lgsquadlem1 15525 2sqlem2 15563 |
| Copyright terms: Public domain | W3C validator |