![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcl | Unicode version |
Description: Alias for ax-mulcl 7911, for naming consistency with mulcli 7964. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7911 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mulcl 7911 |
This theorem is referenced by: 0cn 7951 mulrid 7956 mulcli 7964 mulcld 7980 mul31 8090 mul4 8091 muladd11r 8115 cnegexlem2 8135 cnegex 8137 muladd 8343 subdi 8344 mul02 8346 submul2 8358 mulsub 8360 recextlem1 8610 recexap 8612 muleqadd 8627 divassap 8649 divmulassap 8654 divmuldivap 8671 divmuleqap 8676 divadddivap 8686 conjmulap 8688 cju 8920 zneo 9356 exp3vallem 10523 exp3val 10524 exp1 10528 expp1 10529 expcl 10540 expclzaplem 10546 mulexp 10561 sqcl 10583 subsq 10629 subsq2 10630 binom2sub 10636 mulbinom2 10639 binom3 10640 zesq 10641 bernneq 10643 bernneq2 10644 mulsubdivbinom2ap 10693 facnn 10709 fac0 10710 fac1 10711 facp1 10712 bcval5 10745 bcn2 10746 reim 10863 imcl 10865 crre 10868 crim 10869 remim 10871 mulreap 10875 cjreb 10877 recj 10878 reneg 10879 readd 10880 remullem 10882 remul2 10884 imcj 10886 imneg 10887 imadd 10888 immul2 10891 cjadd 10895 ipcnval 10897 cjmulrcl 10898 cjneg 10901 imval2 10905 cjreim 10914 rennim 11013 sqabsadd 11066 sqabssub 11067 absreimsq 11078 absreim 11079 absmul 11080 mul0inf 11251 mulcn2 11322 climmul 11337 isermulc2 11350 fsummulc2 11458 prodf 11548 clim2prod 11549 clim2divap 11550 prod3fmul 11551 prodf1 11552 prodfap0 11555 prodfrecap 11556 prodrbdclem 11581 fproddccvg 11582 prodmodclem3 11585 prodmodclem2a 11586 zproddc 11589 fprodseq 11593 fprodntrivap 11594 prodsnf 11602 fprodcl 11617 fprodclf 11645 efexp 11692 sinf 11714 cosf 11715 tanval2ap 11723 tanval3ap 11724 resinval 11725 recosval 11726 efi4p 11727 resin4p 11728 recos4p 11729 resincl 11730 recoscl 11731 sinneg 11736 cosneg 11737 efival 11742 efmival 11743 efeul 11744 sinadd 11746 cosadd 11747 sinsub 11750 cossub 11751 subsin 11753 sinmul 11754 cosmul 11755 addcos 11756 subcos 11757 cos2tsin 11761 ef01bndlem 11766 sin01bnd 11767 cos01bnd 11768 absef 11779 absefib 11780 efieq1re 11781 demoivre 11782 demoivreALT 11783 odd2np1lem 11879 odd2np1 11880 opoe 11902 omoe 11903 opeo 11904 omeo 11905 modgcd 11994 qredeq 12098 modprm0 12256 pythagtriplem1 12267 pythagtriplem12 12277 pythagtriplem14 12279 gzmulcl 12378 cncrng 13548 cnfldmulg 13555 mulc1cncf 14161 mulcncflem 14175 dvmulxxbr 14251 dvmulxx 14253 dvimulf 14255 efper 14313 sinperlem 14314 sin2kpi 14317 cos2kpi 14318 efimpi 14325 sincosq1eq 14345 abssinper 14352 sinkpi 14353 coskpi 14354 binom4 14482 lgsdilem2 14522 lgsne0 14524 2sqlem2 14547 |
Copyright terms: Public domain | W3C validator |