Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcl | Unicode version |
Description: Alias for ax-mulcl 7884, for naming consistency with mulcli 7937. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcl 7884 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wcel 2146 (class class class)co 5865 cc 7784 cmul 7791 |
This theorem was proved from axioms: ax-mulcl 7884 |
This theorem is referenced by: 0cn 7924 mulid1 7929 mulcli 7937 mulcld 7952 mul31 8062 mul4 8063 muladd11r 8087 cnegexlem2 8107 cnegex 8109 muladd 8315 subdi 8316 mul02 8318 submul2 8330 mulsub 8332 recextlem1 8581 recexap 8583 muleqadd 8598 divassap 8620 divmulassap 8625 divmuldivap 8642 divmuleqap 8647 divadddivap 8657 conjmulap 8659 cju 8891 zneo 9327 exp3vallem 10491 exp3val 10492 exp1 10496 expp1 10497 expcl 10508 expclzaplem 10514 mulexp 10529 sqcl 10551 subsq 10596 subsq2 10597 binom2sub 10603 mulbinom2 10606 binom3 10607 zesq 10608 bernneq 10610 bernneq2 10611 facnn 10675 fac0 10676 fac1 10677 facp1 10678 bcval5 10711 bcn2 10712 reim 10829 imcl 10831 crre 10834 crim 10835 remim 10837 mulreap 10841 cjreb 10843 recj 10844 reneg 10845 readd 10846 remullem 10848 remul2 10850 imcj 10852 imneg 10853 imadd 10854 immul2 10857 cjadd 10861 ipcnval 10863 cjmulrcl 10864 cjneg 10867 imval2 10871 cjreim 10880 rennim 10979 sqabsadd 11032 sqabssub 11033 absreimsq 11044 absreim 11045 absmul 11046 mul0inf 11217 mulcn2 11288 climmul 11303 isermulc2 11316 fsummulc2 11424 prodf 11514 clim2prod 11515 clim2divap 11516 prod3fmul 11517 prodf1 11518 prodfap0 11521 prodfrecap 11522 prodrbdclem 11547 fproddccvg 11548 prodmodclem3 11551 prodmodclem2a 11552 zproddc 11555 fprodseq 11559 fprodntrivap 11560 prodsnf 11568 fprodcl 11583 fprodclf 11611 efexp 11658 sinf 11680 cosf 11681 tanval2ap 11689 tanval3ap 11690 resinval 11691 recosval 11692 efi4p 11693 resin4p 11694 recos4p 11695 resincl 11696 recoscl 11697 sinneg 11702 cosneg 11703 efival 11708 efmival 11709 efeul 11710 sinadd 11712 cosadd 11713 sinsub 11716 cossub 11717 subsin 11719 sinmul 11720 cosmul 11721 addcos 11722 subcos 11723 cos2tsin 11727 ef01bndlem 11732 sin01bnd 11733 cos01bnd 11734 absef 11745 absefib 11746 efieq1re 11747 demoivre 11748 demoivreALT 11749 odd2np1lem 11844 odd2np1 11845 opoe 11867 omoe 11868 opeo 11869 omeo 11870 modgcd 11959 qredeq 12063 modprm0 12221 pythagtriplem1 12232 pythagtriplem12 12242 pythagtriplem14 12244 gzmulcl 12343 mulc1cncf 13647 mulcncflem 13661 dvmulxxbr 13737 dvmulxx 13739 dvimulf 13741 efper 13799 sinperlem 13800 sin2kpi 13803 cos2kpi 13804 efimpi 13811 sincosq1eq 13831 abssinper 13838 sinkpi 13839 coskpi 13840 binom4 13968 lgsdilem2 14008 lgsne0 14010 2sqlem2 14022 |
Copyright terms: Public domain | W3C validator |