ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axlttrn Unicode version

Theorem axlttrn 8140
Description: Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-lttrn 8038 with ordering on the extended reals. New proofs should use lttr 8145 instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axlttrn  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem axlttrn
StepHypRef Expression
1 ax-pre-lttrn 8038 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
2 ltxrlt 8137 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
323adant3 1019 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  A  <RR  B ) )
4 ltxrlt 8137 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <  C  <->  B 
<RR  C ) )
543adant1 1017 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  C  <->  B  <RR  C ) )
63, 5anbi12d 473 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  <-> 
( A  <RR  B  /\  B  <RR  C ) ) )
7 ltxrlt 8137 . . 3  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  A 
<RR  C ) )
873adant2 1018 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  A  <RR  C ) )
91, 6, 83imtr4d 203 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2175   class class class wbr 4043   RRcr 7923    <RR cltrr 7928    < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-lttrn 8038
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-pnf 8108  df-mnf 8109  df-ltxr 8111
This theorem is referenced by:  lttr  8145
  Copyright terms: Public domain W3C validator