| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axlttrn | Unicode version | ||
| Description: Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-lttrn 7993 with ordering on the extended reals. New proofs should use lttr 8100 instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| axlttrn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-lttrn 7993 |
. 2
| |
| 2 | ltxrlt 8092 |
. . . 4
| |
| 3 | 2 | 3adant3 1019 |
. . 3
|
| 4 | ltxrlt 8092 |
. . . 4
| |
| 5 | 4 | 3adant1 1017 |
. . 3
|
| 6 | 3, 5 | anbi12d 473 |
. 2
|
| 7 | ltxrlt 8092 |
. . 3
| |
| 8 | 7 | 3adant2 1018 |
. 2
|
| 9 | 1, 6, 8 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-lttrn 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 |
| This theorem is referenced by: lttr 8100 |
| Copyright terms: Public domain | W3C validator |