ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-lttrn Unicode version

Theorem axpre-lttrn 7902
Description: Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 7944. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-lttrn  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )

Proof of Theorem axpre-lttrn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7846 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 7846 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 elreal 7846 . 2  |-  ( C  e.  RR  <->  E. z  e.  R.  <. z ,  0R >.  =  C )
4 breq1 4021 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  A  <RR  <. y ,  0R >. ) )
54anbi1d 465 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  <-> 
( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >.  <RR  <. z ,  0R >. ) ) )
6 breq1 4021 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. z ,  0R >.  <->  A  <RR  <. z ,  0R >. ) )
75, 6imbi12d 234 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( (
( <. x ,  0R >. 
<RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  <. x ,  0R >.  <RR  <. z ,  0R >. )  <->  ( ( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  A  <RR  <.
z ,  0R >. ) ) )
8 breq2 4022 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  <RR 
<. y ,  0R >.  <->  A  <RR  B ) )
9 breq1 4021 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( <. y ,  0R >.  <RR  <. z ,  0R >.  <->  B  <RR  <. z ,  0R >. ) )
108, 9anbi12d 473 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  <->  ( A  <RR  B  /\  B  <RR  <. z ,  0R >. ) ) )
1110imbi1d 231 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( (
( A  <RR  <. y ,  0R >.  /\  <. y ,  0R >.  <RR  <. z ,  0R >. )  ->  A  <RR 
<. z ,  0R >. )  <-> 
( ( A  <RR  B  /\  B  <RR  <. z ,  0R >. )  ->  A  <RR 
<. z ,  0R >. ) ) )
12 breq2 4022 . . . 4  |-  ( <.
z ,  0R >.  =  C  ->  ( B  <RR 
<. z ,  0R >.  <->  B  <RR  C ) )
1312anbi2d 464 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( ( A  <RR  B  /\  B  <RR 
<. z ,  0R >. )  <-> 
( A  <RR  B  /\  B  <RR  C ) ) )
14 breq2 4022 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( A  <RR 
<. z ,  0R >.  <->  A  <RR  C ) )
1513, 14imbi12d 234 . 2  |-  ( <.
z ,  0R >.  =  C  ->  ( (
( A  <RR  B  /\  B  <RR  <. z ,  0R >. )  ->  A  <RR  <.
z ,  0R >. )  <-> 
( ( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) ) )
16 ltresr 7857 . . . . 5  |-  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y )
17 ltresr 7857 . . . . 5  |-  ( <.
y ,  0R >.  <RR  <. z ,  0R >.  <->  y  <R  z )
18 ltsosr 7782 . . . . . 6  |-  <R  Or  R.
19 ltrelsr 7756 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
2018, 19sotri 5039 . . . . 5  |-  ( ( x  <R  y  /\  y  <R  z )  ->  x  <R  z )
2116, 17, 20syl2anb 291 . . . 4  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  ->  x  <R  z
)
22 ltresr 7857 . . . 4  |-  ( <.
x ,  0R >.  <RR  <. z ,  0R >.  <->  x  <R  z )
2321, 22sylibr 134 . . 3  |-  ( (
<. x ,  0R >.  <RR  <. y ,  0R >.  /\ 
<. y ,  0R >.  <RR  <. z ,  0R >. )  ->  <. x ,  0R >. 
<RR  <. z ,  0R >. )
2423a1i 9 . 2  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. x ,  0R >. 
<RR  <. y ,  0R >.  /\  <. y ,  0R >. 
<RR  <. z ,  0R >. )  ->  <. x ,  0R >.  <RR  <. z ,  0R >. ) )
251, 2, 3, 7, 11, 15, 243gencl 2786 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   <.cop 3610   class class class wbr 4018   R.cnr 7315   0Rc0r 7316    <R cltr 7321   RRcr 7829    <RR cltrr 7834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-1o 6435  df-2o 6436  df-oadd 6439  df-omul 6440  df-er 6553  df-ec 6555  df-qs 6559  df-ni 7322  df-pli 7323  df-mi 7324  df-lti 7325  df-plpq 7362  df-mpq 7363  df-enq 7365  df-nqqs 7366  df-plqqs 7367  df-mqqs 7368  df-1nqqs 7369  df-rq 7370  df-ltnqqs 7371  df-enq0 7442  df-nq0 7443  df-0nq0 7444  df-plq0 7445  df-mq0 7446  df-inp 7484  df-i1p 7485  df-iplp 7486  df-iltp 7488  df-enr 7744  df-nr 7745  df-ltr 7748  df-0r 7749  df-r 7840  df-lt 7843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator