Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ax-sscoll Unicode version

Axiom ax-sscoll 14022
Description: Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function from  a to  b, or equivalently a collection of nonempty subsets of  b indexed by  a, and the consequent asserts the existence of a subset of  c which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. The axiom asserts the existence, for any sets  a ,  b, of a set  c such that that implication holds for any value of the parameter  z of  ph. (Contributed by BJ, 5-Oct-2019.)
Assertion
Ref Expression
ax-sscoll  |-  A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph ) )
Distinct variable groups:    a, b, c, d, x, y, z    ph, a, b, c, d
Allowed substitution hints:    ph( x, y, z)

Detailed syntax breakdown of Axiom ax-sscoll
StepHypRef Expression
1 wph . . . . . . . 8  wff  ph
2 vy . . . . . . . 8  setvar  y
3 vb . . . . . . . . 9  setvar  b
43cv 1347 . . . . . . . 8  class  b
51, 2, 4wrex 2449 . . . . . . 7  wff  E. y  e.  b  ph
6 vx . . . . . . 7  setvar  x
7 va . . . . . . . 8  setvar  a
87cv 1347 . . . . . . 7  class  a
95, 6, 8wral 2448 . . . . . 6  wff  A. x  e.  a  E. y  e.  b  ph
10 vd . . . . . . . . . . 11  setvar  d
1110cv 1347 . . . . . . . . . 10  class  d
121, 2, 11wrex 2449 . . . . . . . . 9  wff  E. y  e.  d  ph
1312, 6, 8wral 2448 . . . . . . . 8  wff  A. x  e.  a  E. y  e.  d  ph
141, 6, 8wrex 2449 . . . . . . . . 9  wff  E. x  e.  a  ph
1514, 2, 11wral 2448 . . . . . . . 8  wff  A. y  e.  d  E. x  e.  a  ph
1613, 15wa 103 . . . . . . 7  wff  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph )
17 vc . . . . . . . 8  setvar  c
1817cv 1347 . . . . . . 7  class  c
1916, 10, 18wrex 2449 . . . . . 6  wff  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph )
209, 19wi 4 . . . . 5  wff  ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) )
21 vz . . . . 5  setvar  z
2220, 21wal 1346 . . . 4  wff  A. z
( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph ) )
2322, 17wex 1485 . . 3  wff  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph ) )
2423, 3wal 1346 . 2  wff  A. b E. c A. z ( A. x  e.  a  E. y  e.  b 
ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) )
2524, 7wal 1346 1  wff  A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph ) )
Colors of variables: wff set class
This axiom is referenced by:  sscoll2  14023
  Copyright terms: Public domain W3C validator