Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-sscoll | Unicode version |
Description: Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that represents a multivalued function from to , or equivalently a collection of nonempty subsets of indexed by , and the consequent asserts the existence of a subset of which "collects" at least one element in the image of each and which is made only of such elements. The axiom asserts the existence, for any sets , of a set such that that implication holds for any value of the parameter of . (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
ax-sscoll |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . . . . . 8 | |
2 | vy | . . . . . . . 8 | |
3 | vb | . . . . . . . . 9 | |
4 | 3 | cv 1347 | . . . . . . . 8 |
5 | 1, 2, 4 | wrex 2449 | . . . . . . 7 |
6 | vx | . . . . . . 7 | |
7 | va | . . . . . . . 8 | |
8 | 7 | cv 1347 | . . . . . . 7 |
9 | 5, 6, 8 | wral 2448 | . . . . . 6 |
10 | vd | . . . . . . . . . . 11 | |
11 | 10 | cv 1347 | . . . . . . . . . 10 |
12 | 1, 2, 11 | wrex 2449 | . . . . . . . . 9 |
13 | 12, 6, 8 | wral 2448 | . . . . . . . 8 |
14 | 1, 6, 8 | wrex 2449 | . . . . . . . . 9 |
15 | 14, 2, 11 | wral 2448 | . . . . . . . 8 |
16 | 13, 15 | wa 103 | . . . . . . 7 |
17 | vc | . . . . . . . 8 | |
18 | 17 | cv 1347 | . . . . . . 7 |
19 | 16, 10, 18 | wrex 2449 | . . . . . 6 |
20 | 9, 19 | wi 4 | . . . . 5 |
21 | vz | . . . . 5 | |
22 | 20, 21 | wal 1346 | . . . 4 |
23 | 22, 17 | wex 1485 | . . 3 |
24 | 23, 3 | wal 1346 | . 2 |
25 | 24, 7 | wal 1346 | 1 |
Colors of variables: wff set class |
This axiom is referenced by: sscoll2 14023 |
Copyright terms: Public domain | W3C validator |