Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnfALT Unicode version

Theorem strcollnfALT 15191
Description: Alternate proof of strcollnf 15190, not using strcollnft 15189. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
strcollnf.nf  |-  F/ b
ph
Assertion
Ref Expression
strcollnfALT  |-  ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
Distinct variable group:    a, b, x, y
Allowed substitution hints:    ph( x, y, a, b)

Proof of Theorem strcollnfALT
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 strcoll2 15188 . 2  |-  ( A. x  e.  a  E. y ph  ->  E. z
( A. x  e.  a  E. y  e.  z  ph  /\  A. y  e.  z  E. x  e.  a  ph ) )
2 nfcv 2332 . . . . 5  |-  F/_ b
a
3 nfcv 2332 . . . . . 6  |-  F/_ b
z
4 strcollnf.nf . . . . . 6  |-  F/ b
ph
53, 4nfrexxy 2529 . . . . 5  |-  F/ b E. y  e.  z 
ph
62, 5nfralxy 2528 . . . 4  |-  F/ b A. x  e.  a  E. y  e.  z 
ph
72, 4nfrexxy 2529 . . . . 5  |-  F/ b E. x  e.  a 
ph
83, 7nfralxy 2528 . . . 4  |-  F/ b A. y  e.  z  E. x  e.  a 
ph
96, 8nfan 1576 . . 3  |-  F/ b ( A. x  e.  a  E. y  e.  z  ph  /\  A. y  e.  z  E. x  e.  a  ph )
10 nfv 1539 . . . 4  |-  F/ z A. x  e.  a  E. y  e.  b 
ph
11 nfv 1539 . . . 4  |-  F/ z A. y  e.  b  E. x  e.  a 
ph
1210, 11nfan 1576 . . 3  |-  F/ z ( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph )
13 rexeq 2687 . . . . 5  |-  ( z  =  b  ->  ( E. y  e.  z  ph 
<->  E. y  e.  b 
ph ) )
1413ralbidv 2490 . . . 4  |-  ( z  =  b  ->  ( A. x  e.  a  E. y  e.  z  ph 
<-> 
A. x  e.  a  E. y  e.  b 
ph ) )
15 raleq 2686 . . . 4  |-  ( z  =  b  ->  ( A. y  e.  z  E. x  e.  a  ph 
<-> 
A. y  e.  b  E. x  e.  a 
ph ) )
1614, 15anbi12d 473 . . 3  |-  ( z  =  b  ->  (
( A. x  e.  a  E. y  e.  z  ph  /\  A. y  e.  z  E. x  e.  a  ph ) 
<->  ( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) ) )
179, 12, 16cbvex 1767 . 2  |-  ( E. z ( A. x  e.  a  E. y  e.  z  ph  /\  A. y  e.  z  E. x  e.  a  ph ) 
<->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
A. y  e.  b  E. x  e.  a 
ph ) )
181, 17sylib 122 1  |-  ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   F/wnf 1471   E.wex 1503   A.wral 2468   E.wrex 2469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-strcoll 15187
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator