Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ax-sscoll GIF version

Axiom ax-sscoll 16374
Description: Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that 𝜑 represents a multivalued function from 𝑎 to 𝑏, or equivalently a collection of nonempty subsets of 𝑏 indexed by 𝑎, and the consequent asserts the existence of a subset of 𝑐 which "collects" at least one element in the image of each 𝑥𝑎 and which is made only of such elements. The axiom asserts the existence, for any sets 𝑎, 𝑏, of a set 𝑐 such that that implication holds for any value of the parameter 𝑧 of 𝜑. (Contributed by BJ, 5-Oct-2019.)
Assertion
Ref Expression
ax-sscoll 𝑎𝑏𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝜑,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Detailed syntax breakdown of Axiom ax-sscoll
StepHypRef Expression
1 wph . . . . . . . 8 wff 𝜑
2 vy . . . . . . . 8 setvar 𝑦
3 vb . . . . . . . . 9 setvar 𝑏
43cv 1394 . . . . . . . 8 class 𝑏
51, 2, 4wrex 2509 . . . . . . 7 wff 𝑦𝑏 𝜑
6 vx . . . . . . 7 setvar 𝑥
7 va . . . . . . . 8 setvar 𝑎
87cv 1394 . . . . . . 7 class 𝑎
95, 6, 8wral 2508 . . . . . 6 wff 𝑥𝑎𝑦𝑏 𝜑
10 vd . . . . . . . . . . 11 setvar 𝑑
1110cv 1394 . . . . . . . . . 10 class 𝑑
121, 2, 11wrex 2509 . . . . . . . . 9 wff 𝑦𝑑 𝜑
1312, 6, 8wral 2508 . . . . . . . 8 wff 𝑥𝑎𝑦𝑑 𝜑
141, 6, 8wrex 2509 . . . . . . . . 9 wff 𝑥𝑎 𝜑
1514, 2, 11wral 2508 . . . . . . . 8 wff 𝑦𝑑𝑥𝑎 𝜑
1613, 15wa 104 . . . . . . 7 wff (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)
17 vc . . . . . . . 8 setvar 𝑐
1817cv 1394 . . . . . . 7 class 𝑐
1916, 10, 18wrex 2509 . . . . . 6 wff 𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑)
209, 19wi 4 . . . . 5 wff (∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
21 vz . . . . 5 setvar 𝑧
2220, 21wal 1393 . . . 4 wff 𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
2322, 17wex 1538 . . 3 wff 𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
2423, 3wal 1393 . 2 wff 𝑏𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
2524, 7wal 1393 1 wff 𝑎𝑏𝑐𝑧(∀𝑥𝑎𝑦𝑏 𝜑 → ∃𝑑𝑐 (∀𝑥𝑎𝑦𝑑 𝜑 ∧ ∀𝑦𝑑𝑥𝑎 𝜑))
Colors of variables: wff set class
This axiom is referenced by:  sscoll2  16375
  Copyright terms: Public domain W3C validator