Detailed syntax breakdown of Axiom ax-sscoll
Step | Hyp | Ref
| Expression |
1 | | wph |
. . . . . . . 8
wff 𝜑 |
2 | | vy |
. . . . . . . 8
setvar 𝑦 |
3 | | vb |
. . . . . . . . 9
setvar 𝑏 |
4 | 3 | cv 1347 |
. . . . . . . 8
class 𝑏 |
5 | 1, 2, 4 | wrex 2449 |
. . . . . . 7
wff
∃𝑦 ∈
𝑏 𝜑 |
6 | | vx |
. . . . . . 7
setvar 𝑥 |
7 | | va |
. . . . . . . 8
setvar 𝑎 |
8 | 7 | cv 1347 |
. . . . . . 7
class 𝑎 |
9 | 5, 6, 8 | wral 2448 |
. . . . . 6
wff
∀𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝜑 |
10 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
11 | 10 | cv 1347 |
. . . . . . . . . 10
class 𝑑 |
12 | 1, 2, 11 | wrex 2449 |
. . . . . . . . 9
wff
∃𝑦 ∈
𝑑 𝜑 |
13 | 12, 6, 8 | wral 2448 |
. . . . . . . 8
wff
∀𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑑 𝜑 |
14 | 1, 6, 8 | wrex 2449 |
. . . . . . . . 9
wff
∃𝑥 ∈
𝑎 𝜑 |
15 | 14, 2, 11 | wral 2448 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑑 ∃𝑥 ∈ 𝑎 𝜑 |
16 | 13, 15 | wa 103 |
. . . . . . 7
wff
(∀𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑) |
17 | | vc |
. . . . . . . 8
setvar 𝑐 |
18 | 17 | cv 1347 |
. . . . . . 7
class 𝑐 |
19 | 16, 10, 18 | wrex 2449 |
. . . . . 6
wff
∃𝑑 ∈
𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑) |
20 | 9, 19 | wi 4 |
. . . . 5
wff
(∀𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |
21 | | vz |
. . . . 5
setvar 𝑧 |
22 | 20, 21 | wal 1346 |
. . . 4
wff
∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |
23 | 22, 17 | wex 1485 |
. . 3
wff
∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |
24 | 23, 3 | wal 1346 |
. 2
wff
∀𝑏∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |
25 | 24, 7 | wal 1346 |
1
wff
∀𝑎∀𝑏∃𝑐∀𝑧(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 → ∃𝑑 ∈ 𝑐 (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑑 𝜑 ∧ ∀𝑦 ∈ 𝑑 ∃𝑥 ∈ 𝑎 𝜑)) |