| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > sscoll2 | Unicode version | ||
| Description: Version of ax-sscoll 15633 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| sscoll2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . 6
| |
| 2 | rexeq 2694 |
. . . . . . 7
| |
| 3 | 2 | adantl 277 |
. . . . . 6
|
| 4 | 1, 3 | raleqbidv 2709 |
. . . . 5
|
| 5 | eleq2 2260 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 276 |
. . . . . . . . 9
|
| 7 | 6 | imbi1d 231 |
. . . . . . . 8
|
| 8 | 7 | ralbidv2 2499 |
. . . . . . 7
|
| 9 | 6 | anbi1d 465 |
. . . . . . . . 9
|
| 10 | 9 | rexbidv2 2500 |
. . . . . . . 8
|
| 11 | 10 | ralbidv 2497 |
. . . . . . 7
|
| 12 | 8, 11 | anbi12d 473 |
. . . . . 6
|
| 13 | 12 | rexbidv 2498 |
. . . . 5
|
| 14 | 4, 13 | imbi12d 234 |
. . . 4
|
| 15 | 14 | albidv 1838 |
. . 3
|
| 16 | 15 | exbidv 1839 |
. 2
|
| 17 | ax-sscoll 15633 |
. . . 4
| |
| 18 | 17 | spi 1550 |
. . 3
|
| 19 | 18 | spi 1550 |
. 2
|
| 20 | 16, 19 | ch2varv 15414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sscoll 15633 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |