| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > sscoll2 | Unicode version | ||
| Description: Version of ax-sscoll 15885 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| sscoll2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . 6
| |
| 2 | rexeq 2702 |
. . . . . . 7
| |
| 3 | 2 | adantl 277 |
. . . . . 6
|
| 4 | 1, 3 | raleqbidv 2717 |
. . . . 5
|
| 5 | eleq2 2268 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 276 |
. . . . . . . . 9
|
| 7 | 6 | imbi1d 231 |
. . . . . . . 8
|
| 8 | 7 | ralbidv2 2507 |
. . . . . . 7
|
| 9 | 6 | anbi1d 465 |
. . . . . . . . 9
|
| 10 | 9 | rexbidv2 2508 |
. . . . . . . 8
|
| 11 | 10 | ralbidv 2505 |
. . . . . . 7
|
| 12 | 8, 11 | anbi12d 473 |
. . . . . 6
|
| 13 | 12 | rexbidv 2506 |
. . . . 5
|
| 14 | 4, 13 | imbi12d 234 |
. . . 4
|
| 15 | 14 | albidv 1846 |
. . 3
|
| 16 | 15 | exbidv 1847 |
. 2
|
| 17 | ax-sscoll 15885 |
. . . 4
| |
| 18 | 17 | spi 1558 |
. . 3
|
| 19 | 18 | spi 1558 |
. 2
|
| 20 | 16, 19 | ch2varv 15666 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sscoll 15885 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |