Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sscoll2 Unicode version

Theorem sscoll2 14023
Description: Version of ax-sscoll 14022 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
Assertion
Ref Expression
sscoll2  |-  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph ) )
Distinct variable groups:    a, b, c, d, x, y, z    ph, c, d
Allowed substitution hints:    ph( x, y, z, a, b)

Proof of Theorem sscoll2
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( ( u  =  a  /\  v  =  b )  ->  u  =  a )
2 rexeq 2666 . . . . . . 7  |-  ( v  =  b  ->  ( E. y  e.  v  ph 
<->  E. y  e.  b 
ph ) )
32adantl 275 . . . . . 6  |-  ( ( u  =  a  /\  v  =  b )  ->  ( E. y  e.  v  ph  <->  E. y  e.  b  ph ) )
41, 3raleqbidv 2677 . . . . 5  |-  ( ( u  =  a  /\  v  =  b )  ->  ( A. x  e.  u  E. y  e.  v  ph  <->  A. x  e.  a  E. y  e.  b  ph ) )
5 eleq2 2234 . . . . . . . . . 10  |-  ( u  =  a  ->  (
x  e.  u  <->  x  e.  a ) )
65adantr 274 . . . . . . . . 9  |-  ( ( u  =  a  /\  v  =  b )  ->  ( x  e.  u  <->  x  e.  a ) )
76imbi1d 230 . . . . . . . 8  |-  ( ( u  =  a  /\  v  =  b )  ->  ( ( x  e.  u  ->  E. y  e.  d  ph )  <->  ( x  e.  a  ->  E. y  e.  d  ph ) ) )
87ralbidv2 2472 . . . . . . 7  |-  ( ( u  =  a  /\  v  =  b )  ->  ( A. x  e.  u  E. y  e.  d  ph  <->  A. x  e.  a  E. y  e.  d  ph ) )
96anbi1d 462 . . . . . . . . 9  |-  ( ( u  =  a  /\  v  =  b )  ->  ( ( x  e.  u  /\  ph )  <->  ( x  e.  a  /\  ph ) ) )
109rexbidv2 2473 . . . . . . . 8  |-  ( ( u  =  a  /\  v  =  b )  ->  ( E. x  e.  u  ph  <->  E. x  e.  a  ph ) )
1110ralbidv 2470 . . . . . . 7  |-  ( ( u  =  a  /\  v  =  b )  ->  ( A. y  e.  d  E. x  e.  u  ph  <->  A. y  e.  d  E. x  e.  a  ph ) )
128, 11anbi12d 470 . . . . . 6  |-  ( ( u  =  a  /\  v  =  b )  ->  ( ( A. x  e.  u  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  u  ph ) 
<->  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) ) )
1312rexbidv 2471 . . . . 5  |-  ( ( u  =  a  /\  v  =  b )  ->  ( E. d  e.  c  ( A. x  e.  u  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  u  ph ) 
<->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) ) )
144, 13imbi12d 233 . . . 4  |-  ( ( u  =  a  /\  v  =  b )  ->  ( ( A. x  e.  u  E. y  e.  v  ph  ->  E. d  e.  c  ( A. x  e.  u  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  u  ph ) )  <->  ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  a  ph ) ) ) )
1514albidv 1817 . . 3  |-  ( ( u  =  a  /\  v  =  b )  ->  ( A. z ( A. x  e.  u  E. y  e.  v  ph  ->  E. d  e.  c  ( A. x  e.  u  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  u  ph ) )  <->  A. z
( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph ) ) ) )
1615exbidv 1818 . 2  |-  ( ( u  =  a  /\  v  =  b )  ->  ( E. c A. z ( A. x  e.  u  E. y  e.  v  ph  ->  E. d  e.  c  ( A. x  e.  u  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  u  ph ) )  <->  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph ) ) ) )
17 ax-sscoll 14022 . . . 4  |-  A. u A. v E. c A. z ( A. x  e.  u  E. y  e.  v  ph  ->  E. d  e.  c  ( A. x  e.  u  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  u  ph ) )
1817spi 1529 . . 3  |-  A. v E. c A. z ( A. x  e.  u  E. y  e.  v  ph  ->  E. d  e.  c  ( A. x  e.  u  E. y  e.  d  ph  /\  A. y  e.  d  E. x  e.  u  ph ) )
1918spi 1529 . 2  |-  E. c A. z ( A. x  e.  u  E. y  e.  v  ph  ->  E. d  e.  c  ( A. x  e.  u  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  u  ph ) )
2016, 19ch2varv 13803 1  |-  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
A. y  e.  d  E. x  e.  a 
ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485   A.wral 2448   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sscoll 14022
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator