| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > sscoll2 | Unicode version | ||
| Description: Version of ax-sscoll 16308 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| sscoll2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . 6
| |
| 2 | rexeq 2729 |
. . . . . . 7
| |
| 3 | 2 | adantl 277 |
. . . . . 6
|
| 4 | 1, 3 | raleqbidv 2744 |
. . . . 5
|
| 5 | eleq2 2293 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 276 |
. . . . . . . . 9
|
| 7 | 6 | imbi1d 231 |
. . . . . . . 8
|
| 8 | 7 | ralbidv2 2532 |
. . . . . . 7
|
| 9 | 6 | anbi1d 465 |
. . . . . . . . 9
|
| 10 | 9 | rexbidv2 2533 |
. . . . . . . 8
|
| 11 | 10 | ralbidv 2530 |
. . . . . . 7
|
| 12 | 8, 11 | anbi12d 473 |
. . . . . 6
|
| 13 | 12 | rexbidv 2531 |
. . . . 5
|
| 14 | 4, 13 | imbi12d 234 |
. . . 4
|
| 15 | 14 | albidv 1870 |
. . 3
|
| 16 | 15 | exbidv 1871 |
. 2
|
| 17 | ax-sscoll 16308 |
. . . 4
| |
| 18 | 17 | spi 1582 |
. . 3
|
| 19 | 18 | spi 1582 |
. 2
|
| 20 | 16, 19 | ch2varv 16090 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sscoll 16308 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |