Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > sscoll2 | Unicode version |
Description: Version of ax-sscoll 13869 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
sscoll2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . 6 | |
2 | rexeq 2662 | . . . . . . 7 | |
3 | 2 | adantl 275 | . . . . . 6 |
4 | 1, 3 | raleqbidv 2673 | . . . . 5 |
5 | eleq2 2230 | . . . . . . . . . 10 | |
6 | 5 | adantr 274 | . . . . . . . . 9 |
7 | 6 | imbi1d 230 | . . . . . . . 8 |
8 | 7 | ralbidv2 2468 | . . . . . . 7 |
9 | 6 | anbi1d 461 | . . . . . . . . 9 |
10 | 9 | rexbidv2 2469 | . . . . . . . 8 |
11 | 10 | ralbidv 2466 | . . . . . . 7 |
12 | 8, 11 | anbi12d 465 | . . . . . 6 |
13 | 12 | rexbidv 2467 | . . . . 5 |
14 | 4, 13 | imbi12d 233 | . . . 4 |
15 | 14 | albidv 1812 | . . 3 |
16 | 15 | exbidv 1813 | . 2 |
17 | ax-sscoll 13869 | . . . 4 | |
18 | 17 | spi 1524 | . . 3 |
19 | 18 | spi 1524 | . 2 |
20 | 16, 19 | ch2varv 13649 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 wral 2444 wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sscoll 13869 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |