Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd3or Unicode version

Theorem bd3or 13573
Description: A disjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd3or.1  |- BOUNDED  ph
bd3or.2  |- BOUNDED  ps
bd3or.3  |- BOUNDED  ch
Assertion
Ref Expression
bd3or  |- BOUNDED  ( ph  \/  ps  \/  ch )

Proof of Theorem bd3or
StepHypRef Expression
1 bd3or.1 . . . 4  |- BOUNDED  ph
2 bd3or.2 . . . 4  |- BOUNDED  ps
31, 2ax-bdor 13560 . . 3  |- BOUNDED  ( ph  \/  ps )
4 bd3or.3 . . 3  |- BOUNDED  ch
53, 4ax-bdor 13560 . 2  |- BOUNDED  ( ( ph  \/  ps )  \/  ch )
6 df-3or 968 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
75, 6bd0r 13569 1  |- BOUNDED  ( ph  \/  ps  \/  ch )
Colors of variables: wff set class
Syntax hints:    \/ wo 698    \/ w3o 966  BOUNDED wbd 13556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13557  ax-bdor 13560
This theorem depends on definitions:  df-bi 116  df-3or 968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator