Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r Unicode version

Theorem bd0r 13667
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 13666) biconditional in the hypothesis, to work better with definitions (
ps is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min  |- BOUNDED  ph
bd0r.maj  |-  ( ps  <->  ph )
Assertion
Ref Expression
bd0r  |- BOUNDED  ps

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2  |- BOUNDED  ph
2 bd0r.maj . . 3  |-  ( ps  <->  ph )
32bicomi 131 . 2  |-  ( ph  <->  ps )
41, 3bd0 13666 1  |- BOUNDED  ps
Colors of variables: wff set class
Syntax hints:    <-> wb 104  BOUNDED wbd 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13655
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bdbi  13668  bdstab  13669  bddc  13670  bd3or  13671  bd3an  13672  bdfal  13675  bdxor  13678  bj-bdcel  13679  bdab  13680  bdcdeq  13681  bdne  13695  bdnel  13696  bdreu  13697  bdrmo  13698  bdsbcALT  13701  bdss  13706  bdeq0  13709  bdvsn  13716  bdop  13717  bdeqsuc  13723  bj-bdind  13772
  Copyright terms: Public domain W3C validator