![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bd0r | Unicode version |
Description: A formula equivalent to a
bounded one is bounded. Stated with a
commuted (compared with bd0 15029) biconditional in the hypothesis, to work
better with definitions (![]() |
Ref | Expression |
---|---|
bd0r.min |
![]() ![]() |
bd0r.maj |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bd0r |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bd0r.min |
. 2
![]() ![]() | |
2 | bd0r.maj |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bd0 15029 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-bd0 15018 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bdbi 15031 bdstab 15032 bddc 15033 bd3or 15034 bd3an 15035 bdfal 15038 bdxor 15041 bj-bdcel 15042 bdab 15043 bdcdeq 15044 bdne 15058 bdnel 15059 bdreu 15060 bdrmo 15061 bdsbcALT 15064 bdss 15069 bdeq0 15072 bdvsn 15079 bdop 15080 bdeqsuc 15086 bj-bdind 15135 |
Copyright terms: Public domain | W3C validator |