![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bd0r | Unicode version |
Description: A formula equivalent to a
bounded one is bounded. Stated with a
commuted (compared with bd0 11670) biconditional in the hypothesis, to work
better with definitions (![]() |
Ref | Expression |
---|---|
bd0r.min |
![]() ![]() |
bd0r.maj |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bd0r |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bd0r.min |
. 2
![]() ![]() | |
2 | bd0r.maj |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bd0 11670 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-bd0 11659 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: bdbi 11672 bdstab 11673 bddc 11674 bd3or 11675 bd3an 11676 bdfal 11679 bdxor 11682 bj-bdcel 11683 bdab 11684 bdcdeq 11685 bdne 11699 bdnel 11700 bdreu 11701 bdrmo 11702 bdsbcALT 11705 bdss 11710 bdeq0 11713 bdvsn 11720 bdop 11721 bdeqsuc 11727 bj-bdind 11780 |
Copyright terms: Public domain | W3C validator |