![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bd0r | Unicode version |
Description: A formula equivalent to a
bounded one is bounded. Stated with a
commuted (compared with bd0 15316) biconditional in the hypothesis, to work
better with definitions (![]() |
Ref | Expression |
---|---|
bd0r.min |
![]() ![]() |
bd0r.maj |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bd0r |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bd0r.min |
. 2
![]() ![]() | |
2 | bd0r.maj |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bd0 15316 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-bd0 15305 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bdbi 15318 bdstab 15319 bddc 15320 bd3or 15321 bd3an 15322 bdfal 15325 bdxor 15328 bj-bdcel 15329 bdab 15330 bdcdeq 15331 bdne 15345 bdnel 15346 bdreu 15347 bdrmo 15348 bdsbcALT 15351 bdss 15356 bdeq0 15359 bdvsn 15366 bdop 15367 bdeqsuc 15373 bj-bdind 15422 |
Copyright terms: Public domain | W3C validator |