Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdab Unicode version

Theorem bdab 15028
Description: Membership in a class defined by class abstraction using a bounded formula, is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdab.1  |- BOUNDED  ph
Assertion
Ref Expression
bdab  |- BOUNDED  x  e.  { y  |  ph }

Proof of Theorem bdab
StepHypRef Expression
1 bdab.1 . . 3  |- BOUNDED  ph
21ax-bdsb 15012 . 2  |- BOUNDED  [ x  /  y ] ph
3 df-clab 2176 . 2  |-  ( x  e.  { y  | 
ph }  <->  [ x  /  y ] ph )
42, 3bd0r 15015 1  |- BOUNDED  x  e.  { y  |  ph }
Colors of variables: wff set class
Syntax hints:   [wsb 1773    e. wcel 2160   {cab 2175  BOUNDED wbd 15002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 15003  ax-bdsb 15012
This theorem depends on definitions:  df-bi 117  df-clab 2176
This theorem is referenced by:  bdcab  15039  bdsbcALT  15049
  Copyright terms: Public domain W3C validator