![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdab | Unicode version |
Description: Membership in a class defined by class abstraction using a bounded formula, is a bounded formula. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdab.1 |
![]() ![]() |
Ref | Expression |
---|---|
bdab |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdab.1 |
. . 3
![]() ![]() | |
2 | 1 | ax-bdsb 14659 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-clab 2164 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bd0r 14662 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-bd0 14650 ax-bdsb 14659 |
This theorem depends on definitions: df-bi 117 df-clab 2164 |
This theorem is referenced by: bdcab 14686 bdsbcALT 14696 |
Copyright terms: Public domain | W3C validator |