Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab Unicode version

Theorem bdcab 16212
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1  |- BOUNDED  ph
Assertion
Ref Expression
bdcab  |- BOUNDED  { x  |  ph }

Proof of Theorem bdcab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3  |- BOUNDED  ph
21bdab 16201 . 2  |- BOUNDED  y  e.  { x  |  ph }
32bdelir 16210 1  |- BOUNDED  { x  |  ph }
Colors of variables: wff set class
Syntax hints:   {cab 2215  BOUNDED wbd 16175  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-bd0 16176  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-bdc 16204
This theorem is referenced by:  bds  16214  bdcrab  16215  bdccsb  16223  bdcdif  16224  bdcun  16225  bdcin  16226  bdcpw  16232  bdcsn  16233  bdcuni  16239  bdcint  16240  bdciun  16241  bdciin  16242  bdcriota  16246  bj-bdfindis  16310
  Copyright terms: Public domain W3C validator