Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab Unicode version

Theorem bdcab 14686
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1  |- BOUNDED  ph
Assertion
Ref Expression
bdcab  |- BOUNDED  { x  |  ph }

Proof of Theorem bdcab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3  |- BOUNDED  ph
21bdab 14675 . 2  |- BOUNDED  y  e.  { x  |  ph }
32bdelir 14684 1  |- BOUNDED  { x  |  ph }
Colors of variables: wff set class
Syntax hints:   {cab 2163  BOUNDED wbd 14649  BOUNDED wbdc 14677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1449  ax-bd0 14650  ax-bdsb 14659
This theorem depends on definitions:  df-bi 117  df-clab 2164  df-bdc 14678
This theorem is referenced by:  bds  14688  bdcrab  14689  bdccsb  14697  bdcdif  14698  bdcun  14699  bdcin  14700  bdcpw  14706  bdcsn  14707  bdcuni  14713  bdcint  14714  bdciun  14715  bdciin  14716  bdcriota  14720  bj-bdfindis  14784
  Copyright terms: Public domain W3C validator