![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcab | Unicode version |
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
bdcab.1 |
![]() ![]() |
Ref | Expression |
---|---|
bdcab |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcab.1 |
. . 3
![]() ![]() | |
2 | 1 | bdab 15400 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | bdelir 15409 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-bd0 15375 ax-bdsb 15384 |
This theorem depends on definitions: df-bi 117 df-clab 2180 df-bdc 15403 |
This theorem is referenced by: bds 15413 bdcrab 15414 bdccsb 15422 bdcdif 15423 bdcun 15424 bdcin 15425 bdcpw 15431 bdcsn 15432 bdcuni 15438 bdcint 15439 bdciun 15440 bdciin 15441 bdcriota 15445 bj-bdfindis 15509 |
Copyright terms: Public domain | W3C validator |