Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab Unicode version

Theorem bdcab 13884
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1  |- BOUNDED  ph
Assertion
Ref Expression
bdcab  |- BOUNDED  { x  |  ph }

Proof of Theorem bdcab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3  |- BOUNDED  ph
21bdab 13873 . 2  |- BOUNDED  y  e.  { x  |  ph }
32bdelir 13882 1  |- BOUNDED  { x  |  ph }
Colors of variables: wff set class
Syntax hints:   {cab 2156  BOUNDED wbd 13847  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-bd0 13848  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-bdc 13876
This theorem is referenced by:  bds  13886  bdcrab  13887  bdccsb  13895  bdcdif  13896  bdcun  13897  bdcin  13898  bdcpw  13904  bdcsn  13905  bdcuni  13911  bdcint  13912  bdciun  13913  bdciin  13914  bdcriota  13918  bj-bdfindis  13982
  Copyright terms: Public domain W3C validator