![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcab | Unicode version |
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
bdcab.1 |
![]() ![]() |
Ref | Expression |
---|---|
bdcab |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcab.1 |
. . 3
![]() ![]() | |
2 | 1 | bdab 14675 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | bdelir 14684 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1449 ax-bd0 14650 ax-bdsb 14659 |
This theorem depends on definitions: df-bi 117 df-clab 2164 df-bdc 14678 |
This theorem is referenced by: bds 14688 bdcrab 14689 bdccsb 14697 bdcdif 14698 bdcun 14699 bdcin 14700 bdcpw 14706 bdcsn 14707 bdcuni 14713 bdcint 14714 bdciun 14715 bdciin 14716 bdcriota 14720 bj-bdfindis 14784 |
Copyright terms: Public domain | W3C validator |