Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdab GIF version

Theorem bdab 13873
Description: Membership in a class defined by class abstraction using a bounded formula, is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdab.1 BOUNDED 𝜑
Assertion
Ref Expression
bdab BOUNDED 𝑥 ∈ {𝑦𝜑}

Proof of Theorem bdab
StepHypRef Expression
1 bdab.1 . . 3 BOUNDED 𝜑
21ax-bdsb 13857 . 2 BOUNDED [𝑥 / 𝑦]𝜑
3 df-clab 2157 . 2 (𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
42, 3bd0r 13860 1 BOUNDED 𝑥 ∈ {𝑦𝜑}
Colors of variables: wff set class
Syntax hints:  [wsb 1755  wcel 2141  {cab 2156  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13848  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157
This theorem is referenced by:  bdcab  13884  bdsbcALT  13894
  Copyright terms: Public domain W3C validator