ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfbi2 Unicode version

Theorem dfbi2 388
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
dfbi2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )

Proof of Theorem dfbi2
StepHypRef Expression
1 df-bi 117 . . 3  |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )  /\  ( ( (
ph  ->  ps )  /\  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
21simpli 111 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ph  ->  ps )  /\  ( ps  ->  ph )
) )
31simpri 113 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  ->  ( ph 
<->  ps ) )
42, 3impbii 126 1  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  pm5.17dc  905  dcbi  938  orbididc  955  trubifal  1427  albiim  1498  hbbi  1559  hbbid  1586  nfbid  1599  spsbbi  1855  sbbi  1975  cleqh  2293  ralbiim  2628  reu8  2956  sseq2  3203  soeq2  4347  fun11  5321  dffo3  5705  isnsg2  13273  bdbi  15318
  Copyright terms: Public domain W3C validator