Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfbi2 | Unicode version |
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
dfbi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 116 | . . 3 | |
2 | 1 | simpli 110 | . 2 |
3 | 1 | simpri 112 | . 2 |
4 | 2, 3 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm4.71 387 pm5.17dc 890 dcbi 921 orbididc 938 trubifal 1398 albiim 1467 hbbi 1528 hbbid 1555 nfbid 1568 spsbbi 1824 sbbi 1939 cleqh 2257 ralbiim 2591 reu8 2908 sseq2 3152 soeq2 4275 fun11 5234 dffo3 5611 bdbi 13360 |
Copyright terms: Public domain | W3C validator |