ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfbi2 Unicode version

Theorem dfbi2 386
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
dfbi2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )

Proof of Theorem dfbi2
StepHypRef Expression
1 df-bi 116 . . 3  |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )  /\  ( ( (
ph  ->  ps )  /\  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
21simpli 110 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ph  ->  ps )  /\  ( ps  ->  ph )
) )
31simpri 112 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  ->  ( ph 
<->  ps ) )
42, 3impbii 125 1  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.71  387  pm5.17dc  890  dcbi  921  orbididc  938  trubifal  1398  albiim  1467  hbbi  1528  hbbid  1555  nfbid  1568  spsbbi  1824  sbbi  1939  cleqh  2257  ralbiim  2591  reu8  2908  sseq2  3152  soeq2  4275  fun11  5234  dffo3  5611  bdbi  13360
  Copyright terms: Public domain W3C validator