ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfbi2 Unicode version

Theorem dfbi2 388
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
dfbi2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )

Proof of Theorem dfbi2
StepHypRef Expression
1 df-bi 117 . . 3  |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )  /\  ( ( (
ph  ->  ps )  /\  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
21simpli 111 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ph  ->  ps )  /\  ( ps  ->  ph )
) )
31simpri 113 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  ->  ( ph 
<->  ps ) )
42, 3impbii 126 1  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  pm5.17dc  905  dcbi  938  orbididc  955  trubifal  1427  albiim  1501  hbbi  1562  hbbid  1589  nfbid  1602  spsbbi  1858  sbbi  1978  cleqh  2296  ralbiim  2631  reu8  2960  sseq2  3207  soeq2  4351  fun11  5325  dffo3  5709  isnsg2  13333  bdbi  15472
  Copyright terms: Public domain W3C validator