Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfbi2 | Unicode version |
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
dfbi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 116 | . . 3 | |
2 | 1 | simpli 110 | . 2 |
3 | 1 | simpri 112 | . 2 |
4 | 2, 3 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm4.71 387 pm5.17dc 899 dcbi 931 orbididc 948 trubifal 1411 albiim 1480 hbbi 1541 hbbid 1568 nfbid 1581 spsbbi 1837 sbbi 1952 cleqh 2270 ralbiim 2604 reu8 2926 sseq2 3171 soeq2 4301 fun11 5265 dffo3 5643 bdbi 13861 |
Copyright terms: Public domain | W3C validator |