| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfbi2 | Unicode version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfbi2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 |
. . 3
| |
| 2 | 1 | simpli 111 |
. 2
|
| 3 | 1 | simpri 113 |
. 2
|
| 4 | 2, 3 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 pm5.17dc 906 dcbi 939 orbididc 956 trubifal 1436 albiim 1510 hbbi 1571 hbbid 1598 nfbid 1611 spsbbi 1867 sbbi 1987 cleqh 2305 ralbiim 2640 reu8 2969 sseq2 3217 soeq2 4363 fun11 5341 dffo3 5727 isnsg2 13539 bdbi 15762 |
| Copyright terms: Public domain | W3C validator |