| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfbi2 | Unicode version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfbi2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 |
. . 3
| |
| 2 | 1 | simpli 111 |
. 2
|
| 3 | 1 | simpri 113 |
. 2
|
| 4 | 2, 3 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 pm5.17dc 906 dcbi 939 orbididc 956 trubifal 1436 albiim 1511 hbbi 1572 hbbid 1599 nfbid 1612 spsbbi 1868 sbbi 1988 cleqh 2307 ralbiim 2642 reu8 2976 sseq2 3225 soeq2 4381 fun11 5360 dffo3 5750 isnsg2 13654 bdbi 15961 |
| Copyright terms: Public domain | W3C validator |