| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfbi2 | Unicode version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfbi2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 |
. . 3
| |
| 2 | 1 | simpli 111 |
. 2
|
| 3 | 1 | simpri 113 |
. 2
|
| 4 | 2, 3 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 pm5.17dc 905 dcbi 938 orbididc 955 trubifal 1427 albiim 1501 hbbi 1562 hbbid 1589 nfbid 1602 spsbbi 1858 sbbi 1978 cleqh 2296 ralbiim 2631 reu8 2960 sseq2 3208 soeq2 4352 fun11 5326 dffo3 5712 isnsg2 13409 bdbi 15556 |
| Copyright terms: Public domain | W3C validator |