ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfbi2 Unicode version

Theorem dfbi2 386
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
dfbi2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )

Proof of Theorem dfbi2
StepHypRef Expression
1 df-bi 116 . . 3  |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )  /\  ( ( (
ph  ->  ps )  /\  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
21simpli 110 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ph  ->  ps )  /\  ( ps  ->  ph )
) )
31simpri 112 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  ->  ( ph 
<->  ps ) )
42, 3impbii 125 1  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.71  387  pm5.17dc  894  dcbi  926  orbididc  943  trubifal  1406  albiim  1475  hbbi  1536  hbbid  1563  nfbid  1576  spsbbi  1832  sbbi  1947  cleqh  2266  ralbiim  2600  reu8  2922  sseq2  3166  soeq2  4294  fun11  5255  dffo3  5632  bdbi  13718
  Copyright terms: Public domain W3C validator