ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bifal Unicode version

Theorem bifal 1377
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bifal.1  |-  -.  ph
Assertion
Ref Expression
bifal  |-  ( ph  <-> F.  )

Proof of Theorem bifal
StepHypRef Expression
1 bifal.1 . 2  |-  -.  ph
2 fal 1371 . 2  |-  -. F.
31, 22false 702 1  |-  ( ph  <-> F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   F. wfal 1369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator