![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2false | Unicode version |
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
2false.1 |
![]() ![]() ![]() |
2false.2 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
2false |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2false.1 |
. . 3
![]() ![]() ![]() | |
2 | 1 | pm2.21i 647 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2false.2 |
. . 3
![]() ![]() ![]() | |
4 | 3 | pm2.21i 647 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bianfi 948 bifal 1376 dfnul2 3438 dfnul3 3439 rab0 3465 iun0 3957 0iun 3958 0xp 4720 cnv0 5046 co02 5156 0er 6586 bdnth 14969 bdnthALT 14970 |
Copyright terms: Public domain | W3C validator |