| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2false | Unicode version | ||
| Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| 2false.1 |
|
| 2false.2 |
|
| Ref | Expression |
|---|---|
| 2false |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2false.1 |
. . 3
| |
| 2 | 1 | pm2.21i 649 |
. 2
|
| 3 | 2false.2 |
. . 3
| |
| 4 | 3 | pm2.21i 649 |
. 2
|
| 5 | 2, 4 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bianfi 953 bifal 1408 dfnul2 3493 dfnul3 3494 rab0 3520 iun0 4021 0iun 4022 0xp 4796 cnv0 5128 co02 5238 0er 6704 2lgslem4 15767 bdnth 16127 bdnthALT 16128 |
| Copyright terms: Public domain | W3C validator |