![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2false | Unicode version |
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
2false.1 |
![]() ![]() ![]() |
2false.2 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
2false |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2false.1 |
. . 3
![]() ![]() ![]() | |
2 | 1 | pm2.21i 611 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2false.2 |
. . 3
![]() ![]() ![]() | |
4 | 3 | pm2.21i 611 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | impbii 125 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 106 ax-ia3 107 ax-in2 581 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bianfi 894 bifal 1303 dfnul2 3289 dfnul3 3290 rab0 3315 iun0 3792 0iun 3793 0xp 4531 cnv0 4848 co02 4957 0er 6340 bdnth 11998 bdnthALT 11999 |
Copyright terms: Public domain | W3C validator |