ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2false Unicode version

Theorem 2false 701
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
2false.1  |-  -.  ph
2false.2  |-  -.  ps
Assertion
Ref Expression
2false  |-  ( ph  <->  ps )

Proof of Theorem 2false
StepHypRef Expression
1 2false.1 . . 3  |-  -.  ph
21pm2.21i 646 . 2  |-  ( ph  ->  ps )
3 2false.2 . . 3  |-  -.  ps
43pm2.21i 646 . 2  |-  ( ps 
->  ph )
52, 4impbii 126 1  |-  ( ph  <->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bianfi  947  bifal  1366  dfnul2  3426  dfnul3  3427  rab0  3453  iun0  3945  0iun  3946  0xp  4708  cnv0  5034  co02  5144  0er  6571  bdnth  14671  bdnthALT  14672
  Copyright terms: Public domain W3C validator