| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2false | Unicode version | ||
| Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| 2false.1 | 
 | 
| 2false.2 | 
 | 
| Ref | Expression | 
|---|---|
| 2false | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2false.1 | 
. . 3
 | |
| 2 | 1 | pm2.21i 647 | 
. 2
 | 
| 3 | 2false.2 | 
. . 3
 | |
| 4 | 3 | pm2.21i 647 | 
. 2
 | 
| 5 | 2, 4 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: bianfi 949 bifal 1377 dfnul2 3452 dfnul3 3453 rab0 3479 iun0 3973 0iun 3974 0xp 4743 cnv0 5073 co02 5183 0er 6626 2lgslem4 15344 bdnth 15480 bdnthALT 15481 | 
| Copyright terms: Public domain | W3C validator |