Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2false | Unicode version |
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
2false.1 | |
2false.2 |
Ref | Expression |
---|---|
2false |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2false.1 | . . 3 | |
2 | 1 | pm2.21i 636 | . 2 |
3 | 2false.2 | . . 3 | |
4 | 3 | pm2.21i 636 | . 2 |
5 | 2, 4 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bianfi 937 bifal 1356 dfnul2 3411 dfnul3 3412 rab0 3437 iun0 3922 0iun 3923 0xp 4684 cnv0 5007 co02 5117 0er 6535 bdnth 13716 bdnthALT 13717 |
Copyright terms: Public domain | W3C validator |