| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bifal | GIF version | ||
| Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.) | 
| Ref | Expression | 
|---|---|
| bifal.1 | ⊢ ¬ 𝜑 | 
| Ref | Expression | 
|---|---|
| bifal | ⊢ (𝜑 ↔ ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bifal.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | fal 1371 | . 2 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | 2false 702 | 1 ⊢ (𝜑 ↔ ⊥) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ↔ wb 105 ⊥wfal 1369 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |