ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitru Unicode version

Theorem bitru 1375
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1  |-  ph
Assertion
Ref Expression
bitru  |-  ( ph  <-> T.  )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2  |-  ph
2 tru 1367 . 2  |- T.
31, 22th 174 1  |-  ( ph  <-> T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-tru 1366
This theorem is referenced by:  truorfal  1416  falortru  1417  truimtru  1419  falimtru  1421  falimfal  1422  notfal  1424  trubitru  1425  falbifal  1428
  Copyright terms: Public domain W3C validator