ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitru Unicode version

Theorem bitru 1301
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1  |-  ph
Assertion
Ref Expression
bitru  |-  ( ph  <-> T.  )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2  |-  ph
2 tru 1293 . 2  |- T.
31, 22th 172 1  |-  ( ph  <-> T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   T. wtru 1290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-tru 1292
This theorem is referenced by:  truorfal  1342  falortru  1343  truimtru  1345  falimtru  1347  falimfal  1348  notfal  1350  trubitru  1351  falbifal  1354
  Copyright terms: Public domain W3C validator