Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-imnimnn Unicode version

Theorem bj-imnimnn 13629
Description: If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 13628 as its last step. (Contributed by BJ, 27-Oct-2024.)
Hypotheses
Ref Expression
bj-imnimnn.1  |-  ( ph  ->  ps )
bj-imnimnn.2  |-  ( -. 
ph  ->  ps )
Assertion
Ref Expression
bj-imnimnn  |-  -.  -.  ps

Proof of Theorem bj-imnimnn
StepHypRef Expression
1 bj-imnimnn.1 . . 3  |-  ( ph  ->  ps )
21con3i 622 . 2  |-  ( -. 
ps  ->  -.  ph )
3 bj-imnimnn.2 . . 3  |-  ( -. 
ph  ->  ps )
43con3i 622 . 2  |-  ( -. 
ps  ->  -.  -.  ph )
52, 4pm2.65i 629 1  |-  -.  -.  ps
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  bj-nnst  13634
  Copyright terms: Public domain W3C validator