ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.65i Unicode version

Theorem pm2.65i 601
Description: Inference rule for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
Hypotheses
Ref Expression
pm2.65i.1  |-  ( ph  ->  ps )
pm2.65i.2  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
pm2.65i  |-  -.  ph

Proof of Theorem pm2.65i
StepHypRef Expression
1 pm2.65i.2 . . 3  |-  ( ph  ->  -.  ps )
2 pm2.65i.1 . . 3  |-  ( ph  ->  ps )
31, 2nsyl3 589 . 2  |-  ( ph  ->  -.  ph )
4 pm2.01 579 . 2  |-  ( (
ph  ->  -.  ph )  ->  -.  ph )
53, 4ax-mp 7 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in1 577  ax-in2 578
This theorem is referenced by:  mt2  602  mto  621  pm5.19  655  noel  3279  0nelop  4049  elirr  4330  en2lp  4343  soirri  4793  0neqopab  5651  fzp1disj  9424  fzonel  9499  fzouzdisj  9519
  Copyright terms: Public domain W3C validator