ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.65i Unicode version

Theorem pm2.65i 634
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
Hypotheses
Ref Expression
pm2.65i.1  |-  ( ph  ->  ps )
pm2.65i.2  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
pm2.65i  |-  -.  ph

Proof of Theorem pm2.65i
StepHypRef Expression
1 pm2.65i.2 . . 3  |-  ( ph  ->  -.  ps )
2 pm2.65i.1 . . 3  |-  ( ph  ->  ps )
31, 2nsyl3 621 . 2  |-  ( ph  ->  -.  ph )
4 pm2.01 611 . 2  |-  ( (
ph  ->  -.  ph )  ->  -.  ph )
53, 4ax-mp 5 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610
This theorem is referenced by:  mt2  635  mto  657  pm5.19  701  noel  3418  0nelop  4231  elirr  4523  en2lp  4536  soirri  5003  canth  5805  0neqopab  5896  fzp1disj  10029  fzonel  10109  fzouzdisj  10129  lgsval2lem  13670  bj-imnimnn  13738  nnnotnotr  13990
  Copyright terms: Public domain W3C validator