ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqal Unicode version

Theorem cdeqal 2940
Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cdeqal  |- CondEq ( x  =  y  ->  ( A. z ph  <->  A. z ps ) )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem cdeqal
StepHypRef Expression
1 cdeqnot.1 . . . 4  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
21cdeqri 2937 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32albidv 1812 . 2  |-  ( x  =  y  ->  ( A. z ph  <->  A. z ps ) )
43cdeqi 2936 1  |- CondEq ( x  =  y  ->  ( A. z ph  <->  A. z ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1341  CondEqwcdeq 2934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-17 1514
This theorem depends on definitions:  df-bi 116  df-cdeq 2935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator