ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqab Unicode version

Theorem cdeqab 3018
Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cdeqab  |- CondEq ( x  =  y  ->  { z  |  ph }  =  { z  |  ps } )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem cdeqab
StepHypRef Expression
1 cdeqnot.1 . . . 4  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
21cdeqri 3014 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32abbidv 2347 . 2  |-  ( x  =  y  ->  { z  |  ph }  =  { z  |  ps } )
43cdeqi 3013 1  |- CondEq ( x  =  y  ->  { z  |  ph }  =  { z  |  ps } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   {cab 2215  CondEqwcdeq 3011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-cdeq 3012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator