| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albidv | Unicode version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 |
|
| Ref | Expression |
|---|---|
| albidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 |
. 2
| |
| 2 | albidv.1 |
. 2
| |
| 3 | 1, 2 | albidh 1526 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1873 2albidv 1913 sbal1yz 2052 eujust 2079 euf 2082 mo23 2119 axext3 2212 bm1.1 2214 eqeq1 2236 cbvabw 2352 nfceqdf 2371 ralbidv2 2532 alexeq 2929 pm13.183 2941 eqeu 2973 mo2icl 2982 euind 2990 reuind 3008 cdeqal 3017 sbcal 3080 sbcalg 3081 sbcabel 3111 csbcow 3135 csbiebg 3167 ssconb 3337 reldisj 3543 sbcssg 3600 elint 3929 axsep2 4203 zfauscl 4204 bm1.3ii 4205 exmidel 4289 euotd 4341 freq1 4435 freq2 4437 eusv1 4543 ontr2exmid 4617 regexmid 4627 tfisi 4679 nnregexmid 4713 iota5 5300 sbcfung 5342 funimass4 5684 dffo3 5782 eufnfv 5870 dff13 5892 uchoice 6283 tfr1onlemsucfn 6486 tfr1onlemsucaccv 6487 tfr1onlembxssdm 6489 tfr1onlembfn 6490 tfrcllemsucfn 6499 tfrcllemsucaccv 6500 tfrcllembxssdm 6502 tfrcllembfn 6503 tfrcl 6510 frecabcl 6545 ssfiexmid 7038 domfiexmid 7040 diffitest 7049 findcard 7050 findcard2 7051 findcard2s 7052 fiintim 7093 fisseneq 7096 isomni 7303 isomnimap 7304 ismkv 7320 ismkvmap 7321 iswomni 7332 iswomnimap 7333 omniwomnimkv 7334 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 fz1sbc 10292 frecuzrdgtcl 10634 frecuzrdgfunlem 10641 zfz1iso 11063 istopg 14673 bdsep2 16249 bdsepnfALT 16252 bdzfauscl 16253 bdbm1.3ii 16254 bj-2inf 16301 bj-nn0sucALT 16341 sscoll2 16351 |
| Copyright terms: Public domain | W3C validator |