![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albidv | Unicode version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
albidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | albidv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | albidh 1421 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-17 1471 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v 1762 2albidv 1802 sbal1yz 1932 eujust 1957 euf 1960 mo23 1996 axext3 2078 bm1.1 2080 eqeq1 2101 nfceqdf 2234 ralbidv2 2393 alexeq 2757 pm13.183 2768 eqeu 2799 mo2icl 2808 euind 2816 reuind 2834 cdeqal 2843 sbcal 2904 sbcalg 2905 sbcabel 2934 csbiebg 2984 ssconb 3148 reldisj 3353 sbcssg 3411 elint 3716 axsep2 3979 zfauscl 3980 bm1.3ii 3981 exmidel 4057 euotd 4105 freq1 4195 freq2 4197 eusv1 4302 ontr2exmid 4369 regexmid 4379 tfisi 4430 nnregexmid 4462 iota5 5034 sbcfung 5073 funimass4 5390 dffo3 5485 eufnfv 5564 dff13 5585 tfr1onlemsucfn 6143 tfr1onlemsucaccv 6144 tfr1onlembxssdm 6146 tfr1onlembfn 6147 tfrcllemsucfn 6156 tfrcllemsucaccv 6157 tfrcllembxssdm 6159 tfrcllembfn 6160 tfrcl 6167 frecabcl 6202 ssfiexmid 6672 domfiexmid 6674 diffitest 6683 findcard 6684 findcard2 6685 findcard2s 6686 fiintim 6719 fisseneq 6722 isomni 6879 isomnimap 6880 ismkv 6897 ismkvmap 6898 exmidfodomrlemr 6925 exmidfodomrlemrALT 6926 fz1sbc 9659 frecuzrdgtcl 9968 frecuzrdgfunlem 9975 zfz1iso 10361 istopg 11850 bdsep2 12485 bdsepnfALT 12488 bdzfauscl 12489 bdbm1.3ii 12490 bj-2inf 12541 bj-nn0sucALT 12581 strcoll2 12586 strcollnfALT 12589 |
Copyright terms: Public domain | W3C validator |