| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albidv | Unicode version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 |
|
| Ref | Expression |
|---|---|
| albidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 |
. 2
| |
| 2 | albidv.1 |
. 2
| |
| 3 | 1, 2 | albidh 1494 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1841 2albidv 1881 sbal1yz 2020 eujust 2047 euf 2050 mo23 2086 axext3 2179 bm1.1 2181 eqeq1 2203 cbvabw 2319 nfceqdf 2338 ralbidv2 2499 alexeq 2890 pm13.183 2902 eqeu 2934 mo2icl 2943 euind 2951 reuind 2969 cdeqal 2978 sbcal 3041 sbcalg 3042 sbcabel 3071 csbcow 3095 csbiebg 3127 ssconb 3297 reldisj 3503 sbcssg 3560 elint 3881 axsep2 4153 zfauscl 4154 bm1.3ii 4155 exmidel 4239 euotd 4288 freq1 4380 freq2 4382 eusv1 4488 ontr2exmid 4562 regexmid 4572 tfisi 4624 nnregexmid 4658 iota5 5241 sbcfung 5283 funimass4 5614 dffo3 5712 eufnfv 5796 dff13 5818 uchoice 6204 tfr1onlemsucfn 6407 tfr1onlemsucaccv 6408 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfrcllemsucfn 6420 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllembfn 6424 tfrcl 6431 frecabcl 6466 ssfiexmid 6946 domfiexmid 6948 diffitest 6957 findcard 6958 findcard2 6959 findcard2s 6960 fiintim 7001 fisseneq 7004 isomni 7211 isomnimap 7212 ismkv 7228 ismkvmap 7229 iswomni 7240 iswomnimap 7241 omniwomnimkv 7242 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 fz1sbc 10188 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 zfz1iso 10950 istopg 14319 bdsep2 15616 bdsepnfALT 15619 bdzfauscl 15620 bdbm1.3ii 15621 bj-2inf 15668 bj-nn0sucALT 15708 sscoll2 15718 |
| Copyright terms: Public domain | W3C validator |