| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albidv | Unicode version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 |
|
| Ref | Expression |
|---|---|
| albidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. 2
| |
| 2 | albidv.1 |
. 2
| |
| 3 | 1, 2 | albidh 1503 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v 1850 2albidv 1890 sbal1yz 2029 eujust 2056 euf 2059 mo23 2095 axext3 2188 bm1.1 2190 eqeq1 2212 cbvabw 2328 nfceqdf 2347 ralbidv2 2508 alexeq 2899 pm13.183 2911 eqeu 2943 mo2icl 2952 euind 2960 reuind 2978 cdeqal 2987 sbcal 3050 sbcalg 3051 sbcabel 3080 csbcow 3104 csbiebg 3136 ssconb 3306 reldisj 3512 sbcssg 3569 elint 3891 axsep2 4164 zfauscl 4165 bm1.3ii 4166 exmidel 4250 euotd 4300 freq1 4392 freq2 4394 eusv1 4500 ontr2exmid 4574 regexmid 4584 tfisi 4636 nnregexmid 4670 iota5 5254 sbcfung 5296 funimass4 5631 dffo3 5729 eufnfv 5817 dff13 5839 uchoice 6225 tfr1onlemsucfn 6428 tfr1onlemsucaccv 6429 tfr1onlembxssdm 6431 tfr1onlembfn 6432 tfrcllemsucfn 6441 tfrcllemsucaccv 6442 tfrcllembxssdm 6444 tfrcllembfn 6445 tfrcl 6452 frecabcl 6487 ssfiexmid 6975 domfiexmid 6977 diffitest 6986 findcard 6987 findcard2 6988 findcard2s 6989 fiintim 7030 fisseneq 7033 isomni 7240 isomnimap 7241 ismkv 7257 ismkvmap 7258 iswomni 7269 iswomnimap 7270 omniwomnimkv 7271 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 fz1sbc 10220 frecuzrdgtcl 10559 frecuzrdgfunlem 10566 zfz1iso 10988 istopg 14504 bdsep2 15859 bdsepnfALT 15862 bdzfauscl 15863 bdbm1.3ii 15864 bj-2inf 15911 bj-nn0sucALT 15951 sscoll2 15961 |
| Copyright terms: Public domain | W3C validator |