ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cesare Unicode version

Theorem cesare 2123
Description: "Cesare", one of the syllogisms of Aristotelian logic. No  ph is  ps, and all  ch is  ps, therefore no  ch is  ph. (In Aristotelian notation, EAE-2: PeM and SaM therefore SeP.) Related to celarent 2118. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 13-Nov-2016.)
Hypotheses
Ref Expression
cesare.maj  |-  A. x
( ph  ->  -.  ps )
cesare.min  |-  A. x
( ch  ->  ps )
Assertion
Ref Expression
cesare  |-  A. x
( ch  ->  -.  ph )

Proof of Theorem cesare
StepHypRef Expression
1 cesare.maj . . . 4  |-  A. x
( ph  ->  -.  ps )
21spi 1529 . . 3  |-  ( ph  ->  -.  ps )
3 cesare.min . . . 4  |-  A. x
( ch  ->  ps )
43spi 1529 . . 3  |-  ( ch 
->  ps )
52, 4nsyl3 621 . 2  |-  ( ch 
->  -.  ph )
65ax-gen 1442 1  |-  A. x
( ch  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610  ax-gen 1442  ax-4 1503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator