Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > celaront | Unicode version |
Description: "Celaront", one of the syllogisms of Aristotelian logic. No is , all is , and some exist, therefore some is not . (In Aristotelian notation, EAO-1: MeP and SaM therefore SoP.) For example, given "No reptiles have fur", "All snakes are reptiles.", and "Snakes exist.", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
celaront.maj | |
celaront.min | |
celaront.e |
Ref | Expression |
---|---|
celaront |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | celaront.maj | . 2 | |
2 | celaront.min | . 2 | |
3 | celaront.e | . 2 | |
4 | 1, 2, 3 | barbari 2116 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1341 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |