ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spi Unicode version

Theorem spi 1529
Description: Inference reversing generalization (specialization). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1  |-  A. x ph
Assertion
Ref Expression
spi  |-  ph

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2  |-  A. x ph
2 ax-4 1503 . 2  |-  ( A. x ph  ->  ph )
31, 2ax-mp 5 1  |-  ph
Colors of variables: wff set class
Syntax hints:   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-4 1503
This theorem is referenced by:  19.8a  1583  hbe1a  2016  darii  2119  barbari  2121  cesare  2123  camestres  2124  festino  2125  baroco  2126  cesaro  2127  camestros  2128  datisi  2129  disamis  2130  felapton  2133  darapti  2134  calemes  2135  dimatis  2136  fresison  2137  calemos  2138  fesapo  2139  bamalip  2140  tfi  4566  acexmid  5852  bdsep1  13920  strcoll2  14018  sscoll2  14023
  Copyright terms: Public domain W3C validator