ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopick Unicode version

Theorem mopick 2134
Description: "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
mopick  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )

Proof of Theorem mopick
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-17 1550 . . . 4  |-  ( (
ph  /\  ps )  ->  A. y ( ph  /\ 
ps ) )
2 hbs1 1967 . . . . 5  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
3 hbs1 1967 . . . . 5  |-  ( [ y  /  x ] ps  ->  A. x [ y  /  x ] ps )
42, 3hban 1571 . . . 4  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps )  ->  A. x ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
5 sbequ12 1795 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
6 sbequ12 1795 . . . . 5  |-  ( x  =  y  ->  ( ps 
<->  [ y  /  x ] ps ) )
75, 6anbi12d 473 . . . 4  |-  ( x  =  y  ->  (
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) ) )
81, 4, 7cbvexh 1779 . . 3  |-  ( E. x ( ph  /\  ps )  <->  E. y ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
9 ax-17 1550 . . . . . . 7  |-  ( ph  ->  A. y ph )
109mo3h 2109 . . . . . 6  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
11 ax-4 1534 . . . . . . 7  |-  ( A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y )  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
1211sps 1561 . . . . . 6  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
1310, 12sylbi 121 . . . . 5  |-  ( E* x ph  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
14 sbequ2 1793 . . . . . . . . 9  |-  ( x  =  y  ->  ( [ y  /  x ] ps  ->  ps )
)
1514imim2i 12 . . . . . . . 8  |-  ( ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y )  ->  (
( ph  /\  [ y  /  x ] ph )  ->  ( [ y  /  x ] ps  ->  ps ) ) )
1615expd 258 . . . . . . 7  |-  ( ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y )  ->  ( ph  ->  ( [ y  /  x ] ph  ->  ( [ y  /  x ] ps  ->  ps ) ) ) )
1716com4t 85 . . . . . 6  |-  ( [ y  /  x ] ph  ->  ( [ y  /  x ] ps  ->  ( ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y )  -> 
( ph  ->  ps )
) ) )
1817imp 124 . . . . 5  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps )  ->  ( ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( ph  ->  ps ) ) )
1913, 18syl5 32 . . . 4  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps )  ->  ( E* x ph  ->  ( ph  ->  ps ) ) )
2019exlimiv 1622 . . 3  |-  ( E. y ( [ y  /  x ] ph  /\ 
[ y  /  x ] ps )  ->  ( E* x ph  ->  ( ph  ->  ps ) ) )
218, 20sylbi 121 . 2  |-  ( E. x ( ph  /\  ps )  ->  ( E* x ph  ->  ( ph  ->  ps ) ) )
2221impcom 125 1  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E.wex 1516   [wsb 1786   E*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  eupick  2135  mopick2  2139  moexexdc  2140  euexex  2141  morex  2964  imadif  5373  funimaexglem  5376
  Copyright terms: Public domain W3C validator