ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri3 Unicode version

Theorem tfri3 6335
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6333). Finally, we show that  F is unique. We do this by showing that any class  B with the same properties of  F that we showed in parts 1 and 2 is identical to  F. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri3.1  |-  F  = recs ( G )
tfri3.2  |-  ( Fun 
G  /\  ( G `  x )  e.  _V )
Assertion
Ref Expression
tfri3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Distinct variable groups:    x, B    x, F    x, G

Proof of Theorem tfri3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . . 4  |-  F/ x  B  Fn  On
2 nfra1 2497 . . . 4  |-  F/ x A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )
31, 2nfan 1553 . . 3  |-  F/ x
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )
4 nfv 1516 . . . . . 6  |-  F/ x
( B `  y
)  =  ( F `
 y )
53, 4nfim 1560 . . . . 5  |-  F/ x
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )
6 fveq2 5486 . . . . . . 7  |-  ( x  =  y  ->  ( B `  x )  =  ( B `  y ) )
7 fveq2 5486 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
86, 7eqeq12d 2180 . . . . . 6  |-  ( x  =  y  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( B `  y )  =  ( F `  y ) ) )
98imbi2d 229 . . . . 5  |-  ( x  =  y  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) ) ) )
10 r19.21v 2543 . . . . . 6  |-  ( A. y  e.  x  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
11 rsp 2513 . . . . . . . . . 10  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) ) )
12 onss 4470 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  ->  x  C_  On )
13 tfri3.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  F  = recs ( G )
14 tfri3.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Fun 
G  /\  ( G `  x )  e.  _V )
1513, 14tfri1 6333 . . . . . . . . . . . . . . . . . . . . 21  |-  F  Fn  On
16 fvreseq 5589 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  Fn  On  /\  F  Fn  On )  /\  x  C_  On )  ->  ( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
1715, 16mpanl2 432 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
18 fveq2 5486 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  |`  x )  =  ( F  |`  x )  ->  ( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
1917, 18syl6bir 163 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2012, 19sylan2 284 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  Fn  On  /\  x  e.  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2120ancoms 266 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2221imp 123 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  ->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) )
2322adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
2413, 14tfri2 6334 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) )
2524jctr 313 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
26 jcab 593 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) )  <->  ( (
x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  (
x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
2725, 26sylibr 133 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
28 eqeq12 2178 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) )  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) )
2927, 28syl6 33 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) ) )
3029imp 123 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  x  e.  On )  ->  ( ( B `
 x )  =  ( F `  x
)  <->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
3130adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( ( B `  x )  =  ( F `  x )  <-> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) ) )
3223, 31mpbird 166 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( B `  x
)  =  ( F `
 x ) )
3332exp43 370 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3433com4t 85 . . . . . . . . . . . 12  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3534exp4a 364 . . . . . . . . . . 11  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) ) )
3635pm2.43d 50 . . . . . . . . . 10  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3711, 36syl 14 . . . . . . . . 9  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3837com3l 81 . . . . . . . 8  |-  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3938impd 252 . . . . . . 7  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) )
4039a2d 26 . . . . . 6  |-  ( x  e.  On  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  -> 
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
4110, 40syl5bi 151 . . . . 5  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  ->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
425, 9, 41tfis2f 4561 . . . 4  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) )
4342com12 30 . . 3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) )
443, 43ralrimi 2537 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. x  e.  On  ( B `  x )  =  ( F `  x ) )
45 eqfnfv 5583 . . . 4  |-  ( ( B  Fn  On  /\  F  Fn  On )  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4615, 45mpan2 422 . . 3  |-  ( B  Fn  On  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4746biimpar 295 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( F `  x ) )  ->  B  =  F )
4844, 47syldan 280 1  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116   Oncon0 4341    |` cres 4606   Fun wfun 5182    Fn wfn 5183   ` cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator