Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfri3 | Unicode version |
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule ( as described at tfri1 6344). Finally, we show that is unique. We do this by showing that any class with the same properties of that we showed in parts 1 and 2 is identical to . (Contributed by Jim Kingdon, 4-May-2019.) |
Ref | Expression |
---|---|
tfri3.1 | recs |
tfri3.2 |
Ref | Expression |
---|---|
tfri3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . 4 | |
2 | nfra1 2501 | . . . 4 | |
3 | 1, 2 | nfan 1558 | . . 3 |
4 | nfv 1521 | . . . . . 6 | |
5 | 3, 4 | nfim 1565 | . . . . 5 |
6 | fveq2 5496 | . . . . . . 7 | |
7 | fveq2 5496 | . . . . . . 7 | |
8 | 6, 7 | eqeq12d 2185 | . . . . . 6 |
9 | 8 | imbi2d 229 | . . . . 5 |
10 | r19.21v 2547 | . . . . . 6 | |
11 | rsp 2517 | . . . . . . . . . 10 | |
12 | onss 4477 | . . . . . . . . . . . . . . . . . . 19 | |
13 | tfri3.1 | . . . . . . . . . . . . . . . . . . . . . 22 recs | |
14 | tfri3.2 | . . . . . . . . . . . . . . . . . . . . . 22 | |
15 | 13, 14 | tfri1 6344 | . . . . . . . . . . . . . . . . . . . . 21 |
16 | fvreseq 5599 | . . . . . . . . . . . . . . . . . . . . 21 | |
17 | 15, 16 | mpanl2 433 | . . . . . . . . . . . . . . . . . . . 20 |
18 | fveq2 5496 | . . . . . . . . . . . . . . . . . . . 20 | |
19 | 17, 18 | syl6bir 163 | . . . . . . . . . . . . . . . . . . 19 |
20 | 12, 19 | sylan2 284 | . . . . . . . . . . . . . . . . . 18 |
21 | 20 | ancoms 266 | . . . . . . . . . . . . . . . . 17 |
22 | 21 | imp 123 | . . . . . . . . . . . . . . . 16 |
23 | 22 | adantr 274 | . . . . . . . . . . . . . . 15 |
24 | 13, 14 | tfri2 6345 | . . . . . . . . . . . . . . . . . . . 20 |
25 | 24 | jctr 313 | . . . . . . . . . . . . . . . . . . 19 |
26 | jcab 598 | . . . . . . . . . . . . . . . . . . 19 | |
27 | 25, 26 | sylibr 133 | . . . . . . . . . . . . . . . . . 18 |
28 | eqeq12 2183 | . . . . . . . . . . . . . . . . . 18 | |
29 | 27, 28 | syl6 33 | . . . . . . . . . . . . . . . . 17 |
30 | 29 | imp 123 | . . . . . . . . . . . . . . . 16 |
31 | 30 | adantl 275 | . . . . . . . . . . . . . . 15 |
32 | 23, 31 | mpbird 166 | . . . . . . . . . . . . . 14 |
33 | 32 | exp43 370 | . . . . . . . . . . . . 13 |
34 | 33 | com4t 85 | . . . . . . . . . . . 12 |
35 | 34 | exp4a 364 | . . . . . . . . . . 11 |
36 | 35 | pm2.43d 50 | . . . . . . . . . 10 |
37 | 11, 36 | syl 14 | . . . . . . . . 9 |
38 | 37 | com3l 81 | . . . . . . . 8 |
39 | 38 | impd 252 | . . . . . . 7 |
40 | 39 | a2d 26 | . . . . . 6 |
41 | 10, 40 | syl5bi 151 | . . . . 5 |
42 | 5, 9, 41 | tfis2f 4568 | . . . 4 |
43 | 42 | com12 30 | . . 3 |
44 | 3, 43 | ralrimi 2541 | . 2 |
45 | eqfnfv 5593 | . . . 4 | |
46 | 15, 45 | mpan2 423 | . . 3 |
47 | 46 | biimpar 295 | . 2 |
48 | 44, 47 | syldan 280 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 cvv 2730 wss 3121 con0 4348 cres 4613 wfun 5192 wfn 5193 cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-recs 6284 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |