ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com24 Unicode version

Theorem com24 87
Description: Commutation of antecedents. Swap 2nd and 4th. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
com24  |-  ( ph  ->  ( th  ->  ( ch  ->  ( ps  ->  ta ) ) ) )

Proof of Theorem com24
StepHypRef Expression
1 com4.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
21com4t 85 . 2  |-  ( ch 
->  ( th  ->  ( ph  ->  ( ps  ->  ta ) ) ) )
32com13 80 1  |-  ( ph  ->  ( th  ->  ( ch  ->  ( ps  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com25  91  tfrlem9  6322  nnmordi  6519  fundmen  6808  fiintim  6930  elfzodifsumelfzo  10203  ssfzo12  10226  dvdsmodexp  11804  dvdsaddre2b  11850  infpnlem1  12359  grpinveu  12916  mulgass2  13240  lss1d  13475  cnpnei  13804
  Copyright terms: Public domain W3C validator