ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com24 Unicode version

Theorem com24 87
Description: Commutation of antecedents. Swap 2nd and 4th. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
com24  |-  ( ph  ->  ( th  ->  ( ch  ->  ( ps  ->  ta ) ) ) )

Proof of Theorem com24
StepHypRef Expression
1 com4.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
21com4t 85 . 2  |-  ( ch 
->  ( th  ->  ( ph  ->  ( ps  ->  ta ) ) ) )
32com13 80 1  |-  ( ph  ->  ( th  ->  ( ch  ->  ( ps  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com25  91  tfrlem9  6428  nnmordi  6625  fundmen  6922  fiintim  7054  elfzodifsumelfzo  10367  ssfzo12  10390  swrdswrdlem  11195  swrdswrd  11196  wrd2ind  11214  swrdccatin1  11216  dvdsmodexp  12221  dvdsaddre2b  12267  infpnlem1  12797  grpinveu  13485  mulgass2  13935  lss1d  14260  cnpnei  14806
  Copyright terms: Public domain W3C validator