ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com24 Unicode version

Theorem com24 87
Description: Commutation of antecedents. Swap 2nd and 4th. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
com24  |-  ( ph  ->  ( th  ->  ( ch  ->  ( ps  ->  ta ) ) ) )

Proof of Theorem com24
StepHypRef Expression
1 com4.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
21com4t 85 . 2  |-  ( ch 
->  ( th  ->  ( ph  ->  ( ps  ->  ta ) ) ) )
32com13 80 1  |-  ( ph  ->  ( th  ->  ( ch  ->  ( ps  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com25  91  tfrlem9  6407  nnmordi  6604  fundmen  6900  fiintim  7030  elfzodifsumelfzo  10332  ssfzo12  10355  dvdsmodexp  12139  dvdsaddre2b  12185  infpnlem1  12715  grpinveu  13403  mulgass2  13853  lss1d  14178  cnpnei  14724
  Copyright terms: Public domain W3C validator